

Quantum Mechanics in Medicine

Lecture 7: The Free Particle and Box Normalization

Presented by:

Prof. Dr. Fouad Attia Majeed

Department of Medical Physics, Al-Mustaqlab University, Babil, Iraq

fouad.attia.majeed@uomus.edu.iq

Third-Year Students

Outline

- 1 Concept and Physical Assumptions
- 2 Mathematical Derivation
- 3 Wavefunctions and Normalization
- 4 Orthogonality and Completeness
- 5 Multiple Choice Questions

Starting Point and Assumptions

Physical Problem: A single particle (mass m) is free to move along one dimension, but confined between two impenetrable walls at $x = -L/2$ and $x = +L/2$.

Assumptions:

- The motion is one-dimensional along x .
- Potential inside the region is zero ($V(x) = 0$).
- Outside this region, $V(x) \rightarrow \infty$ so that the particle can never exist there.
- The particles total energy is purely kinetic:

$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}.$$

- The system is stationary time dependence can be separated as $e^{-iEt/\hbar}$.

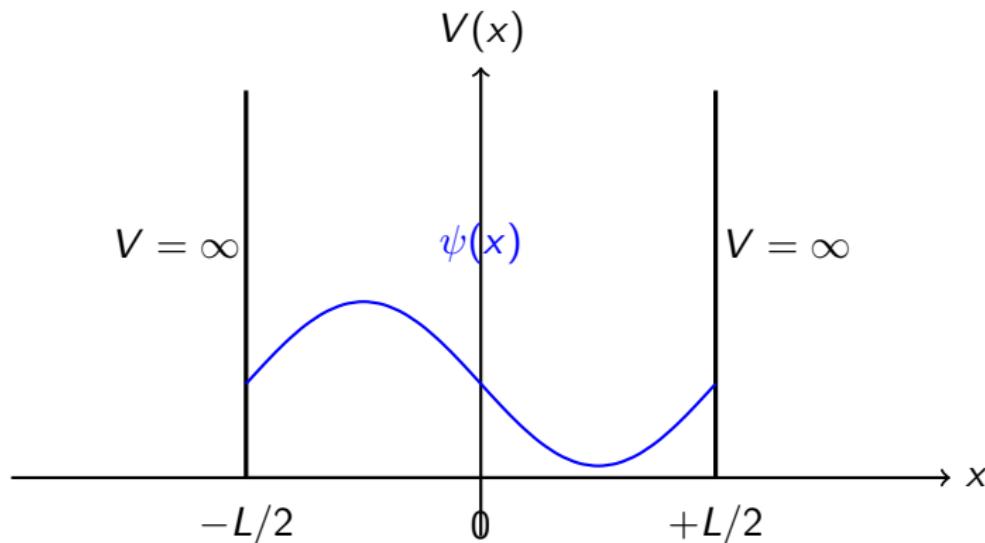
Potential Well Representation

$$V(x) = \begin{cases} 0, & -\frac{L}{2} < x < +\frac{L}{2}, \\ \infty, & |x| \geq \frac{L}{2}. \end{cases}$$

Meaning:

- Inside ($V = 0$): the particle behaves as a *free* particle.
- Outside ($V = \infty$): the wavefunction must vanish, $\psi(x) = 0$.
- The walls represent absolute confinement the particle cannot leak out.

Figure: Infinite Potential Well from $-L/2$ to $+L/2$



Interpretation: The particle is free inside the well but cannot exist beyond the infinite boundaries.

Time-Independent Schrödinger Equation

Inside the well, where $V(x) = 0$:

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x).$$

The general solution is:

$$\psi(x) = Ae^{ikx} + Be^{-ikx},$$

where $k = \sqrt{2mE}/\hbar$.

Alternatively, we can write:

$$\psi(x) = C \sin(kx) + D \cos(kx),$$

using the trigonometric form for real k .

Boundary Conditions and Quantization

Since $\psi(x)$ must vanish at the infinite walls:

$$\psi(-L/2) = 0, \quad \psi(+L/2) = 0.$$

Applying these to $\psi(x) = C \sin(kx) + D \cos(kx)$:

$$\psi(-L/2) = 0 \Rightarrow C \sin(-kL/2) + D \cos(-kL/2) = 0,$$

$$\psi(+L/2) = 0 \Rightarrow C \sin(kL/2) + D \cos(kL/2) = 0.$$

Adding and subtracting leads to:

$$D = 0, \quad \sin(kL/2) = 0.$$

Hence, $kL/2 = n\pi$, giving:

$$k_n = \frac{n\pi}{L}, \quad n = 1, 2, 3, \dots$$

Allowed Energies

The energy eigenvalues follow from $E_n = \hbar^2 k_n^2 / (2m)$:

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, \quad n = 1, 2, 3, \dots$$

Features:

- Energy is quantized: only discrete values are allowed.
- E_n increases with n^2 higher states require more energy.
- The lowest state ($n = 1$) is not zero: $E_1 = \pi^2 \hbar^2 / (2mL^2)$.

Physical meaning: Even in its lowest state, the particle cannot be at rest due to the Heisenberg uncertainty principle.

Normalized Wavefunctions

Inside the well, the general solution satisfying $\psi(\pm L/2) = 0$ is:

$$\psi_n(x) = A_n \sin\left[\frac{n\pi(x + L/2)}{L}\right].$$

Normalization requires:

$$\int_{-L/2}^{L/2} |\psi_n(x)|^2 dx = 1.$$

Performing the integration gives:

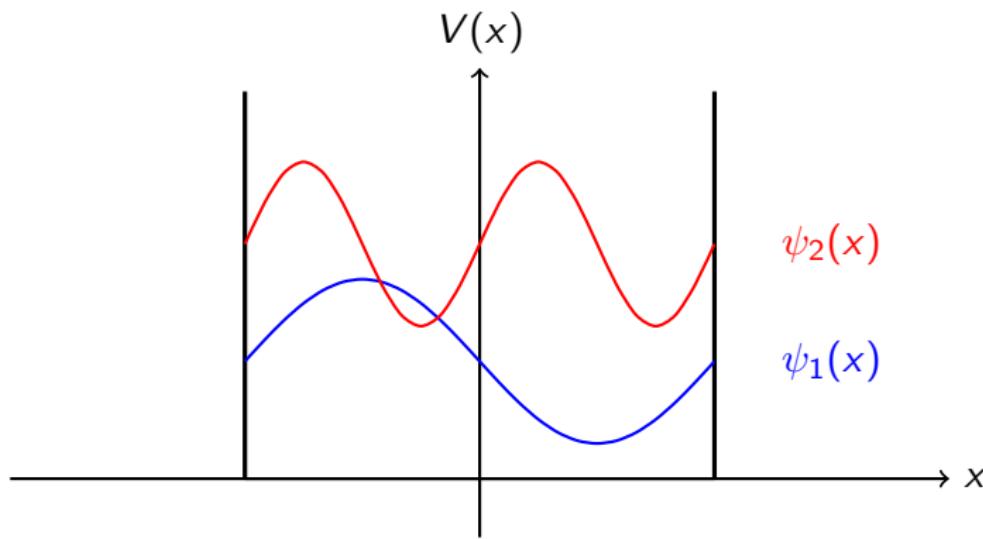
$$A_n = \sqrt{\frac{2}{L}}.$$

Final normalized wavefunction:

$$\boxed{\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left[\frac{n\pi(x + L/2)}{L}\right].}$$

Graphical Representation

- Each wavefunction $\psi_n(x)$ forms a standing wave with n half-wavelengths inside the well.
- The number of nodes (points where $\psi = 0$) increases with n .
- Higher n corresponds to shorter wavelength and higher energy.



Orthogonality of States

For any two distinct states $m \neq n$:

$$\int_{-L/2}^{L/2} \psi_m^*(x) \psi_n(x) dx = 0.$$

This can be shown by direct integration using:

$$\psi_m(x) \psi_n(x) = \frac{2}{L} \sin\left(\frac{m\pi(x + L/2)}{L}\right) \sin\left(\frac{n\pi(x + L/2)}{L}\right).$$

Implication:

- Each eigenfunction is independent.
- Together, they form an orthonormal basis for representing any confined wavefunction.

MCQ 12

Q1. Inside the box, potential energy $V(x)$ is:

- A) Constant and nonzero
- B) Zero
- C) Infinite
- D) Negative

Q2. At the boundaries $x = \pm L/2$, $V(x)$ equals:

- A) Zero
- B) Finite
- C) Infinite
- D) Undefined

Q3. The wavefunction outside the box is:

- A) Constant
- B) Zero
- C) Oscillating
- D) Infinite

Q4. The particles total energy is:

- A) Potential
- B) Zero
- C) Kinetic only
- D) Thermal

MCQ 56

Q5. Schrödinger equation inside the box:

A) $-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} = E\psi$

B) $\frac{d^2\psi}{dx^2} = 0$

C) $E = \psi$

D) $\psi = E$

Q6. General wavefunction inside the box:

A) $\psi = Ae^{kx} + Be^{-kx}$

B) $\psi = Ae^{ikx} + Be^{-ikx}$

C) $\psi = A + Bx$

D) $\psi = \sin x$

Q7. Quantization condition from boundary values:

- A) $kL/2 = n\pi$
- B) $kL = n\pi/2$
- C) $k = L/n$
- D) $k = \pi n^2$

Q8. Allowed wavenumbers are:

- A) $k_n = \frac{2\pi n}{L}$
- B) $k_n = \frac{n\pi}{L}$
- C) $k_n = \frac{\pi}{2L}$
- D) None

MCQ 910

Q9. Energy eigenvalues are:

- A) $E_n = \frac{\hbar^2 k_n^2}{2m}$
- B) $E_n = \hbar k_n$
- C) $E_n = m k_n^2$
- D) $E_n = k_n^2 / \hbar$

Q10. Energy depends on:

- A) n
- B) n^2
- C) $1/n$
- D) $1/n^2$

Q11. Ground-state energy is not zero because:

- A) Heisenberg uncertainty principle
- B) Coulomb attraction
- C) Temperature effects
- D) Friction

Q12. Normalized eigenfunction is:

- A) $\sqrt{\frac{2}{L}} \sin\left[\frac{n\pi(x + L/2)}{L}\right]$
- B) $\sin(kx)$
- C) e^{ikx}
- D) $\cos(kx)$

Q13. Normalization constant A_n equals:

- A) $1/L$
- B) $\sqrt{L/2}$
- C) $\sqrt{2/L}$
- D) $2L$

Q14. The number of nodes in $\psi_n(x)$ is:

- A) $n - 1$
- B) n
- C) 1
- D) 0

Q15. For $n = 2$, the wavefunction has:

- A) One half-wavelength
- B) Two half-wavelengths
- C) Three half-wavelengths
- D) Infinite half-wavelengths

Q16. Orthogonality means:

- A) $\psi_m^* \psi_n$ is constant
- B) $\int_{-L/2}^{L/2} \psi_m^* \psi_n \, dx = 0$ for $m \neq n$
- C) $\psi_m = \psi_n$
- D) Energies are equal

Q17. Orthogonality ensures:

- A) States overlap completely
- B) States are independent
- C) States are identical
- D) Normalization fails

Q18. $|\psi_n(x)|^2$ represents:

- A) Uniform probability
- B) Standing-wave probability pattern
- C) Traveling wave
- D) Decaying exponential

Q19. Confinement of the particle results in:

- A) Continuous energy levels
- B) Discrete quantized energies
- C) Negative energies
- D) Zero energy

Q20. The infinite potential well model is most useful for understanding:

- A) Electron confinement in quantum dots and nanodevices
- B) The motion of planets around the Sun
- C) Radioactive decay inside the nucleus
- D) Chemical bonding in large organic molecules