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Starting Point and Assumptions

Physical Problem: A single particle (mass m) is free to move along one
dimension, but confined between two impenetrable walls at x = −L/2 and
x = +L/2.
Assumptions:

The motion is one-dimensional along x .
Potential inside the region is zero (V (x) = 0).
Outside this region, V (x) → ∞ so that the particle can never exist
there.
The particles total energy is purely kinetic:

E = p2

2m = ℏ2k2

2m .

The system is stationary time dependence can be separated as
e−iEt/ℏ.
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Potential Well Representation

V (x) =


0, −L

2 < x < +L
2 ,

∞, |x | ≥ L
2 .

Meaning:
Inside (V = 0): the particle behaves as a free particle.
Outside (V = ∞): the wavefunction must vanish, ψ(x) = 0.
The walls represent absolute confinement the particle cannot leak
out.
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Figure: Infinite Potential Well from −L/2 to +L/2

x

V (x)

−L/2 +L/20

V = ∞ V = ∞ψ(x)

Interpretation: The particle is free inside the well but cannot exist
beyond the infinite boundaries.
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Time-Independent Schrödinger Equation

Inside the well, where V (x) = 0:

− ℏ2

2m
d2ψ(x)

dx2 = Eψ(x).

The general solution is:

ψ(x) = Aeikx + Be−ikx ,

where k =
√

2mE/ℏ.
Alternatively, we can write:

ψ(x) = C sin(kx) + D cos(kx),

using the trigonometric form for real k.
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Boundary Conditions and Quantization

Since ψ(x) must vanish at the infinite walls:

ψ(−L/2) = 0, ψ(+L/2) = 0.

Applying these to ψ(x) = C sin(kx) + D cos(kx):

ψ(−L/2) = 0 ⇒ C sin(−kL/2) + D cos(−kL/2) = 0,
ψ(+L/2) = 0 ⇒ C sin(kL/2) + D cos(kL/2) = 0.

Adding and subtracting leads to:

D = 0, sin(kL/2) = 0.

Hence, kL/2 = nπ, giving:

kn = nπ
L , n = 1, 2, 3, . . .
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Allowed Energies

The energy eigenvalues follow from En = ℏ2k2
n/(2m):

En = n2π2ℏ2

2mL2 , n = 1, 2, 3, . . .

Features:
Energy is quantized: only discrete values are allowed.
En increases with n2 higher states require more energy.
The lowest state (n = 1) is not zero: E1 = π2ℏ2/(2mL2).

Physical meaning: Even in its lowest state, the particle cannot be at rest
due to the Heisenberg uncertainty principle.

Prof. Dr. Fouad Attia Majeed Quantum Mechanics in Medicine Third-Year Students 8 / 21



Normalized Wavefunctions
Inside the well, the general solution satisfying ψ(±L/2) = 0 is:

ψn(x) = An sin
[nπ(x + L/2)

L

]
.

Normalization requires: ∫ L/2

−L/2
|ψn(x)|2dx = 1.

Performing the integration gives:

An =

√
2
L .

Final normalized wavefunction:

ψn(x) =

√
2
L sin

[nπ(x + L/2)
L

]
.
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Graphical Representation

Each wavefunction ψn(x) forms a standing wave with n
half-wavelengths inside the well.
The number of nodes (points where ψ = 0) increases with n.
Higher n corresponds to shorter wavelength and higher energy.

x

V (x)

ψ1(x)

ψ2(x)
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Orthogonality of States

For any two distinct states m ̸= n:∫ L/2

−L/2
ψ∗

m(x)ψn(x) dx = 0.

This can be shown by direct integration using:

ψm(x)ψn(x) = 2
L sin

(mπ(x + L/2)
L

)
sin

(nπ(x + L/2)
L

)
.

Implication:
Each eigenfunction is independent.
Together, they form an orthonormal basis for representing any
confined wavefunction.
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MCQ 12

Q1. Inside the box, potential energy V (x) is:
A) Constant and nonzero
B) Zero
C) Infinite
D) Negative

Q2. At the boundaries x = ±L/2, V (x) equals:
A) Zero
B) Finite
C) Infinite
D) Undefined
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MCQ 34

Q3. The wavefunction outside the box is:
A) Constant
B) Zero
C) Oscillating
D) Infinite

Q4. The particles total energy is:
A) Potential
B) Zero
C) Kinetic only
D) Thermal
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MCQ 56

Q5. Schrödinger equation inside the box:

A) − ℏ2

2m
d2ψ

dx2 = Eψ

B) d2ψ

dx2 = 0
C) E = ψ
D) ψ = E

Q6. General wavefunction inside the box:
A) ψ = Aekx + Be−kx

B) ψ = Aeikx + Be−ikx

C) ψ = A + Bx
D) ψ = sin x
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MCQ 78

Q7. Quantization condition from boundary values:
A) kL/2 = nπ
B) kL = nπ/2
C) k = L/n
D) k = πn2

Q8. Allowed wavenumbers are:
A) kn = 2πn

L
B) kn = nπ

L
C) kn = π

2L
D) None
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MCQ 910

Q9. Energy eigenvalues are:

A) En = ℏ2k2
n

2m
B) En = ℏkn
C) En = mk2

n
D) En = k2

n/ℏ

Q10. Energy depends on:
A) n
B) n2

C) 1/n
D) 1/n2
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MCQ 1112

Q11. Ground-state energy is not zero because:
A) Heisenberg uncertainty principle
B) Coulomb attraction
C) Temperature effects
D) Friction

Q12. Normalized eigenfunction is:

A)
√

2
L sin

[nπ(x + L/2)
L

]
B) sin(kx)
C) eikx

D) cos(kx)
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MCQ 1314

Q13. Normalization constant An equals:
A) 1/L
B)

√
L/2

C)
√

2/L
D) 2L

Q14. The number of nodes in ψn(x) is:
A) n − 1
B) n
C) 1
D) 0
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MCQ 1516

Q15. For n = 2, the wavefunction has:
A) One half-wavelength
B) Two half-wavelengths
C) Three half-wavelengths
D) Infinite half-wavelengths

Q16. Orthogonality means:
A) ψ∗

mψn is constant
B)

∫ L/2
−L/2 ψ

∗
mψn dx = 0 for m ̸= n

C) ψm = ψn
D) Energies are equal
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MCQ 1718

Q17. Orthogonality ensures:
A) States overlap completely
B) States are independent
C) States are identical
D) Normalization fails

Q18. |ψn(x)|2 represents:
A) Uniform probability
B) Standing-wave probability pattern
C) Traveling wave
D) Decaying exponential
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MCQ 1920

Q19. Confinement of the particle results in:
A) Continuous energy levels
B) Discrete quantized energies
C) Negative energies
D) Zero energy

Q20. The infinite potential well model is most useful for understanding:
A) Electron confinement in quantum dots and nanodevices
B) The motion of planets around the Sun
C) Radioactive decay inside the nucleus
D) Chemical bonding in large organic molecules
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