

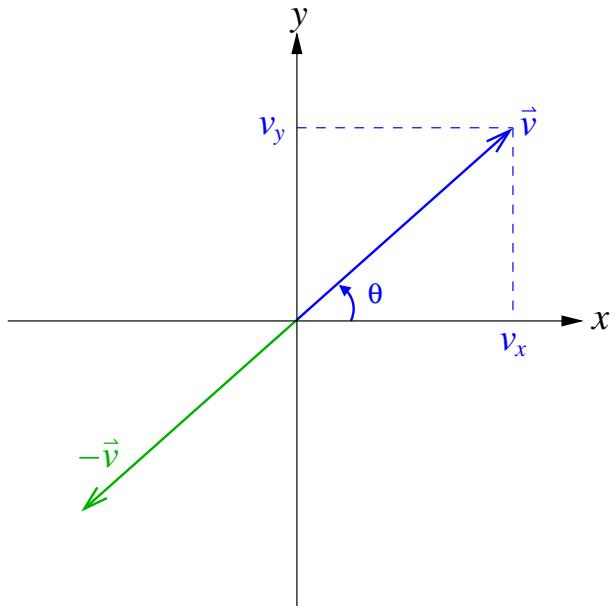
Mechanics

Presented by

Lec. Dr. Sarah Mahdi Obaid
Department of Medical Physics,
Al-Mustaql University,
Babil, Iraq

Email: sarah.mahdi@uomus.edu.iq

First-year students

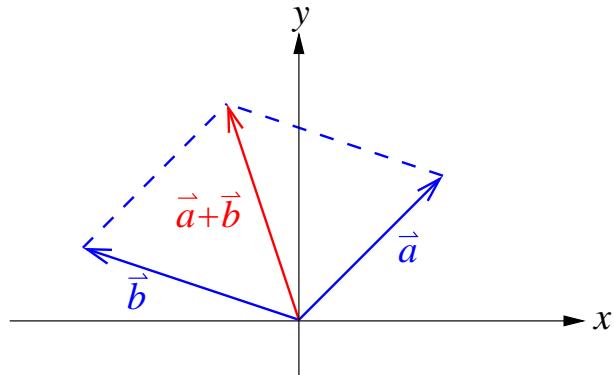

Lecture 1

Motion in One Dimension

2.1 Vector

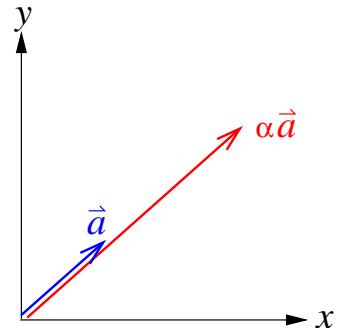
a) Definition

A vector has both magnitude and direction. It is represented by an arrow.



v_x is called the x-component of vector \vec{v} and v_y is called the y-component of vector \vec{v} .

The magnitude of the vector \vec{v} is denoted by $|\vec{v}|$ or v where


$$|\vec{v}| = v = \sqrt{v_x^2 + v_y^2}$$

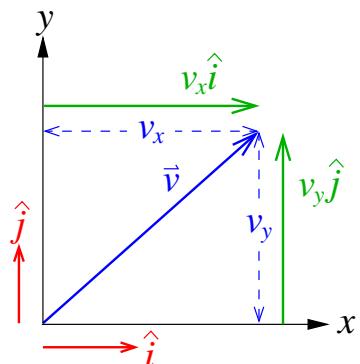
b) Addition of vector

c) Multiplication of vector by a scalar

$\alpha \vec{a}$ has the same direction as \vec{a} but has a magnitude equal to α times the magnitude of \vec{a} , i. e. $|\alpha \vec{a}| = |\alpha| |\vec{a}|$.

d) Component form of a vector

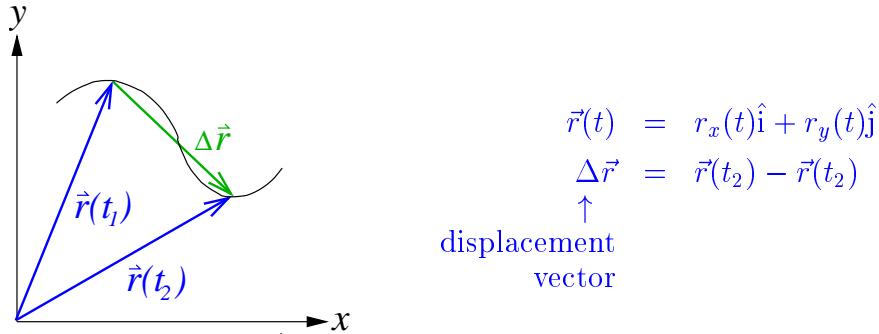
\hat{i} and \hat{j} are called the unit vector of x and y directions which have magnitude of unity, i. e. $|\hat{i}| = |\hat{j}| = 1$.


Thus, $\vec{v} = v_x \hat{i} + v_y \hat{j}$.

With component form,

$$\vec{u} = u_x \hat{i} + u_y \hat{j}, \quad \vec{v} = v_x \hat{i} + v_y \hat{j}$$

$$\vec{u} + \vec{v} = (u_x + v_x) \hat{i} + (u_y + v_y) \hat{j}$$


$$\alpha \vec{u} = \alpha u_x \hat{i} + \alpha u_y \hat{j}$$

2.2 Position, velocity and acceleration vectors

Position vector

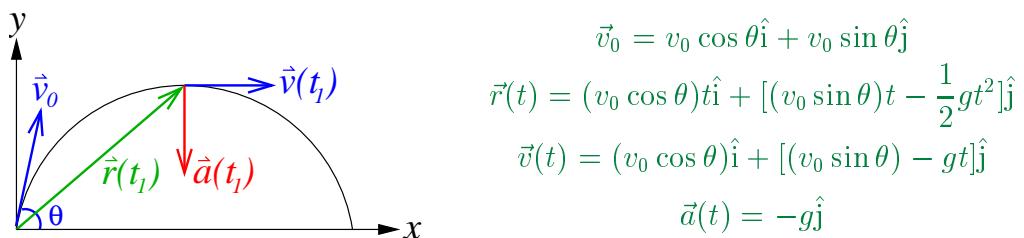
- vector is usually used to describe the position of a particle at time t .

Average velocity in time period $t_1 \rightarrow t_2$:

$$\vec{v}_{\text{ave}} = \frac{\Delta\vec{r}}{\Delta t} = \frac{\vec{r}(t_2) - \vec{r}(t_1)}{t_2 - t_1}$$

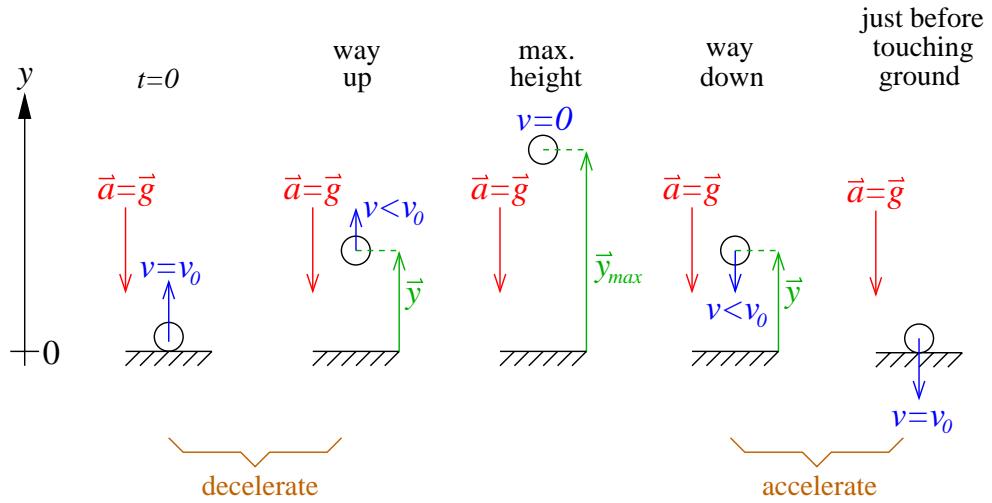
If the time interval Δt is infinitesimal small, i. e. $\Delta t \rightarrow 0$, the instantaneous velocity at time t_1 :

$$\vec{v}_{\text{inst}} = \lim_{\Delta t \rightarrow 0} \frac{\Delta\vec{r}}{\Delta t} = \frac{d\vec{r}(t)}{dt} \quad (\text{tangential to curve } \vec{r}(t))$$


Likewise, the average acceleration in time period $t_1 \rightarrow t_2$:

$$\vec{a}_{\text{ave}} = \frac{\Delta\vec{v}}{\Delta t} = \frac{\vec{v}(t_2) - \vec{v}(t_1)}{t_2 - t_1}$$

$$\vec{a}_{\text{inst}} = \lim_{\Delta t \rightarrow 0} \frac{\Delta\vec{v}}{\Delta t} = \frac{d\vec{v}(t)}{dt} = \frac{d^2\vec{r}(t)}{dt^2}$$


If we talk about velocity or acceleration, we are usually talking about instantaneous velocity and acceleration.

E. g. Projectile motion

2.3 One dimensional motion

An example: Throwing a stone towards the sky vertically with a speed of v_0 .

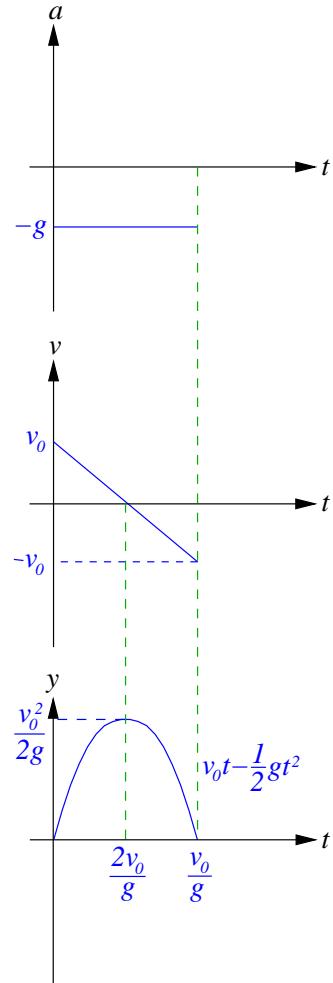
Take upward as positive y direction.

$$\begin{aligned}\therefore a &= \frac{dv}{dt} = \frac{d^2y}{dt^2} = -g \\ v &= \frac{dy}{dt} = - \int g dt = -gt + A, \quad A = \text{constant}\end{aligned}$$

To determine A , substitute the initial condition at $t = 0$,

$$\begin{aligned}\frac{dy}{dt}|_{t=0} &= v(t=0) = A = +v_0 \\ \therefore v &= \frac{dy}{dt} = v_0 - gt \\ y &= \int (v_0 - gt) dt = v_0 t - \frac{1}{2}gt^2 + B, \quad B = \text{constant}\end{aligned}\tag{2.1}$$

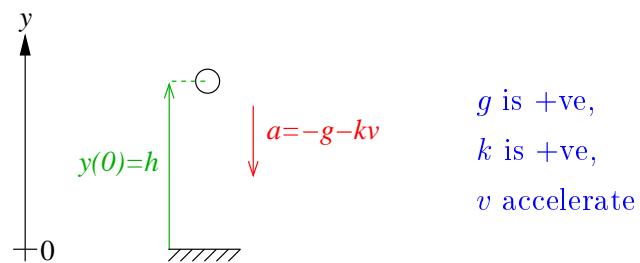
To determine B , substitute $t = 0$ again,


$$\begin{aligned}y(t=0) &= B = 0 \\ \therefore y &= v_0 t - \frac{1}{2}gt^2\end{aligned}\tag{2.2}$$

At maximum height, $\frac{dy}{dt}|_{t=t_{max}} = 0$, i. e. $v_0 - gt_{max} = 0 \Rightarrow t_{max} = \frac{v_0}{g}$.

$$\therefore y_{max} = y(t_{max}) = \frac{v_0^2}{g} - \frac{1}{2}g\frac{v_0^2}{g^2} = \frac{1}{2}\frac{v_0^2}{g}$$

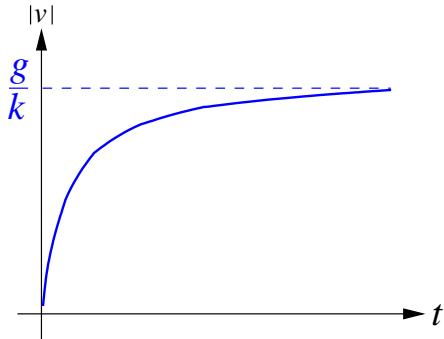
Time for touching the ground again, say t_0 ,


$$y = v_0 t_0 - \frac{1}{2}gt_0^2 = 0 \Rightarrow \underbrace{t_0 = 0}_{\text{initial at ground}} \quad \text{or} \quad v_0 = \frac{1}{2}gt_0 \quad (\text{i. e. } t_0 = \frac{2v_0}{g})$$

2.4 Another example: Non-constant acceleration

Dropping a stone at a height of h with the consideration of the air resistance.

Given: Air drag acceleration $= -kv$, k = positive constant


$$\begin{aligned}
 a &= -g - kv \\
 \Rightarrow \frac{dv}{dt} &= -g - kv
 \end{aligned}$$

$$\begin{aligned}
& \Rightarrow \frac{dv}{-g - kv} = dt \\
& \left(\because \frac{dy(t)}{dt} = f(y) \Rightarrow \frac{dy(t)}{f(y)} = dt \right) \\
& \Rightarrow \int \frac{dv}{-g - kv} = \int dt + A, \quad A = \text{constant} \\
& \Rightarrow -\frac{1}{k} \ln(-g - kv) = t + A \\
& \Rightarrow -g - kv = e^{-k(t+A)} = Be^{-kt}, \quad \text{where } B = e^{-kA} \\
& \Rightarrow v = \frac{1}{k}(-g - Be^{-kt})
\end{aligned}$$

At $t = 0$, $v(0) = 0 \Rightarrow -g - B = 0 \Rightarrow B = -g$

$$\therefore v = \frac{1}{k}(-g + ge^{-kt}) = -\frac{g}{k}(1 - e^{-kt}),$$

$$\text{i. e. } \frac{dy}{dt} = -\frac{g}{k}(1 - e^{-kt})$$

$$\begin{aligned}
y &= - \int \frac{g}{k}(1 - e^{-kt}) dt + C, \quad C = \text{constant} \\
&= -\frac{g}{k}t - \frac{g}{k^2}e^{-kt} + C
\end{aligned}$$

$$\begin{aligned}
\text{At } t = 0, y = h \Rightarrow h = -\frac{g}{k^2} + C \Rightarrow C = h + \frac{g}{k^2} \\
\therefore y &= -\frac{g}{k}t - \frac{g}{k^2}e^{-kt} + h + \frac{g}{k^2} \\
&= h - \frac{g}{k}t + \frac{g}{k^2}(1 - e^{-kt})
\end{aligned}$$

Multiple Choice Questions

- **Q1: What is the formula for calculating velocity in projectile motion?**

A- $v = v_0 + at$ B- $v = \frac{d}{t}$ C- $v = v_0 - at$ D- $v = v_0 + g$ E- None of them

- **Q2: The equation $y = v_0t + \frac{1}{2}at^2$ is used to describe which motion?**

A- Uniform motion B- Projectile motion C- Simple harmonic motion D- Circular motion E- None of them

- **Q3: What does the symbol θ typically represent in projectile motion?**

A- Time B- Initial velocity C- Angle of projection D- Acceleration due to gravity E- None of them

- **Q4: In projectile motion, what is the acceleration at the maximum height?**

A- Zero B- g C- $2g$ D- v_0 E- None of them

- **Q5: The horizontal velocity in projectile motion remains constant because:**

A- There is no horizontal acceleration B- The vertical velocity compensates for horizontal motion C- The gravitational pull only affects vertical motion D- The force of gravity is negligible E- None of them

- **Q6: The range of a projectile is maximized when the angle of projection is:**

A- 30 degrees B- 45 degrees C- 60 degrees D- 90 degrees E- None of them

- **Q7: In uniform circular motion, the velocity is:**

A- Constant in magnitude but changing in direction B- Constant in both magnitude and direction C- Changing in magnitude but constant in direction D- Changing in both magnitude and direction E- None of them

- **Q8: The centripetal force acting on an object moving in a circle is always directed:**

A- Towards the center of the circle B- Away from the center of the circle C- Along the tangent to the circle D- In the direction of motion E- None of them

- **Q9: The acceleration due to gravity is approximately:**

A- 9.8 m/s^2 B- 10 m/s^2 C- 9.81 m/s^2 D- 9.5 m/s^2 E- None of them

- **Q10: The time of flight for a projectile depends on which of the following?**

A- The initial velocity only B- The angle of projection only C- Both the initial velocity and angle of projection D- Only the height E- None of them

- **Q11: The horizontal displacement of a projectile is called its:**

A- Range B- Height C- Velocity D- Acceleration E- None of them

- **Q12: If the initial velocity of a projectile is doubled, its range will:**

A- Increase by a factor of 4 B- Increase by a factor of 2 C- Remain unchanged D- Decrease by a factor of 2 E- None of them

- **Q13: The formula for centripetal acceleration is:**

A- $a_c = \frac{v^2}{r}$ B- $a_c = \frac{r^2}{v}$ C- $a_c = \frac{v}{r}$ D- $a_c = \frac{r}{v}$ E- None of them

- **Q14: The total time a projectile is in the air is called:**

A- Time of flight B- Time interval C- Duration D- Total time E- None of them

- **Q15: Which of the following factors affects the motion of a projectile?**

A- Air resistance B- Gravity C- Initial velocity D- Angle of projection E- All of the above

- **Q16: The velocity at the highest point in projectile motion is:**

A- Zero B- v_0 C- $v_0/2$ D- $v_0\sqrt{2}$ E- None of them

- **Q17: In projectile motion, what is the relationship between the horizontal and vertical motions?**

A- They are independent of each other B- The horizontal motion depends on vertical motion
C- The vertical motion depends on horizontal motion D- They influence each other equally
E- None of them

- **Q18: In circular motion, the period is:**

A- The time for one complete revolution B- The frequency of the motion C- The time taken for half a revolution D- The velocity of the object E- None of them

- **Q19: The angle of elevation for a projectile determines:**

A- The range of the projectile B- The height of the projectile C- The velocity of the projectile
D- The time of flight E- None of them

- **Q20: In which of the following types of motion is the speed constant?**

A- Linear motion B- Circular motion C- Projectile motion D- Uniform motion E- None of them