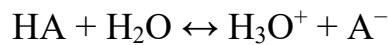


**Republic of Iraq
Ministry of Higher Education & Scientific research
Al-Mustaql University
Science College
Medical physics Department**

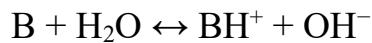
Analytical Chemistry

**For
First Year Student
Lecture 4**

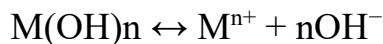
**By
Dr. Assel Amer Hadi**


2025-2026

Acid-Base Equilibria


Acid-base theories:-

1) Arrhenius Theory (H₊ and OH₋):-


Acid:-any substance that ionizes (partially or completely) in water to give hydrogen ion (which associate with the solvent to give hydronium ion H₃O⁺):

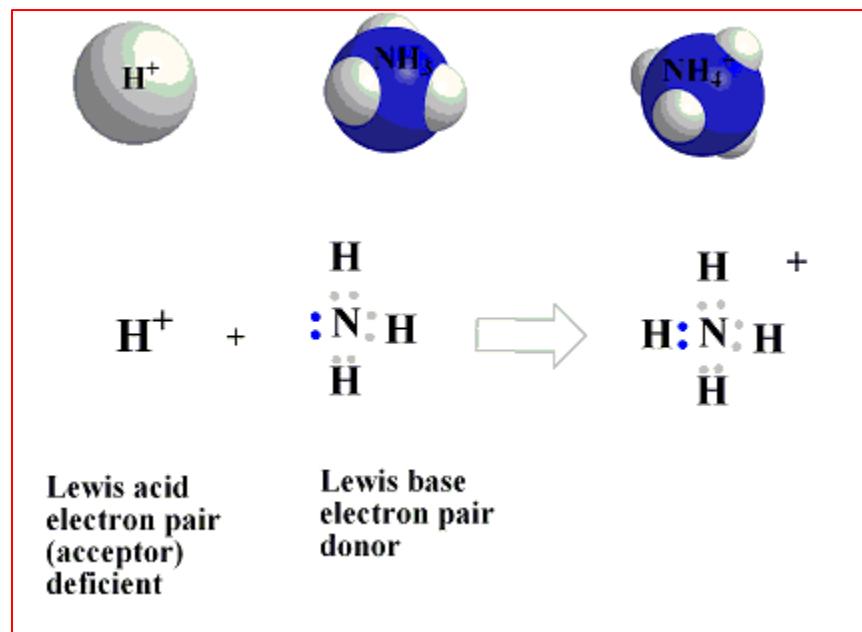
Base:-any substance that ionizes in water to give hydroxyl ions. Weak (partially ionized) to generally ionize as follows:-

While strong bases such as metal hydroxides (e.g. NaOH) dissociate as

This theory is obviously restricted to water as the solvent.

2) Bronsted-Lowry Theory (taking and giving protons, H⁺):-

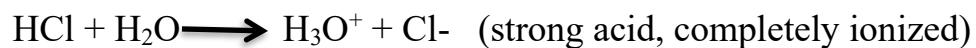
Acid:-any substance that can donate a proton.


Base:-any substance that can accept a proton. Thus, we can write a half reaction:

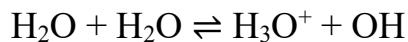
3) Lewis Theory (taking and giving electrons):-

Acid:-a substance that can accept an electron pair.

Base:-a substance that can donate an electron pair.



Strong acids:- H_2SO_4 , HClO_4 , HNO_3 , HI and HCl .


Strong bases:- LiOH , KOH , NaOH and $\text{Ca}(\text{OH})_2$.

Acid-Base Equilibria in water

when an acid or base is dissolved in water, it will dissociate, or ionize, the amount of ionization being dependent on the strength of the acid or base. A strong electrolyte is completely dissociated, while a weak electrolyte is partially dissociated.

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{OAC}^-]}{[\text{HOAC}]}$$

Some of H_2O molecule gives H^+ to other H_2O molecule to produce H_3O^+ ions and OH^- ions.

$$K_a = [\text{H}_3\text{O}^+][\text{OH}^-]/[\text{H}_2\text{O}]^2$$

$$K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = K_a \cdot K_b$$

$$K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \text{ mol}^2 / \text{L}^2 \text{ at } 25^\circ\text{C}$$

K_w is **temperature dependant** it increases with temperature rise , and decreases with its decrease. K_w is used only for water.

Temperature $^\circ\text{C}$	K_w
0.0	1.14×10^{-15}
25	1.01×10^{-14}
40	2.92×10^{-14}
50	5.47×10^{-14}
70	2.30×10^{-13}
10	4.90×10^{-13}

Example :

Calculate the hydronium $[\text{H}_3\text{O}^+]$ and hydroxide ion $[\text{OH}^-]$ concentrations of pure water at 25°C and 100°C ($K_w = 4.9 \times 10^{-13}$) ?

solution:

Because OH^- and H_3O^+ are formed from the dissociation of water only, then their concentrations are equal,

then

$$[\text{H}_3\text{O}^+] = [\text{OH}^-]$$

$$K_w = [\text{H}_3\text{O}^+] [\text{OH}^-]$$

Substitution in the above equation gives :

$$K_w = [\text{H}_3\text{O}^+]^2 \text{ also } K_w = [\text{OH}^-]^2$$

$$[\text{H}_3\text{O}^+] = \sqrt{K_w} \text{ and } [\text{OH}^-] = \sqrt{K_w}$$

$$\text{At } 25^\circ\text{C} [\text{H}_3\text{O}^+] = \sqrt{K_w} = \sqrt{1.01 \times 10^{-14}} = 1.01 \times 10^{-7}$$

$$\text{pH} = -\log(1.01 \times 10^{-7}) = 7.00$$

$$[\text{OH}^-] = \sqrt{K_w} = \sqrt{1.01 \times 10^{-14}} = 1.01 \times 10^{-7}$$

At 100°C

$$[\text{H}_3\text{O}^+] = \sqrt{K_w} = \sqrt{49 \times 10^{-14}} = 7.0 \times 10^{-7}$$

$$\text{pH} = -\log(7 \times 10^{-7}) = 6.15$$

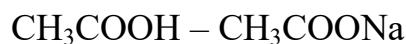
$$[\text{OH}^-] = \sqrt{K_w} = \sqrt{49 \times 10^{-14}} = 7.0 \times 10^{-7}$$

Exercise:

Calculate the change in pH of pure water on heating from 25°C to 50°C ($K_w = 5.47 \times 10^{-14}$).

Buffer solution

is a solution that resist any change in pH(maintain pH approximately constant) when added amount of an acid or base.


Types of Buffer Solution

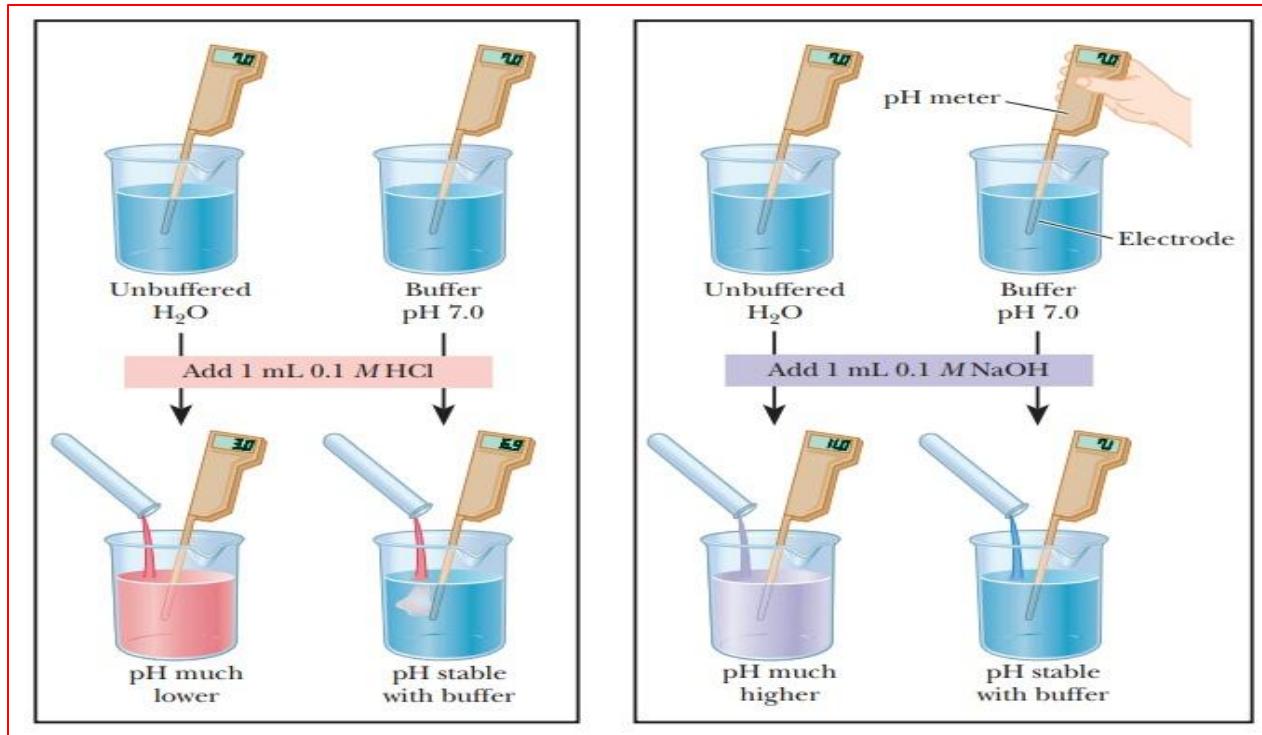
The two primary types into which buffer solutions are broadly classified into are acidic and alkaline buffers.

Acidic Buffers

are made from a weak acid and its salts.

Example:

- CH₃COOH (weak acid)


Basic Buffers

are made from a weak base and its salts.

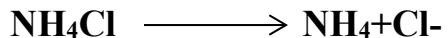
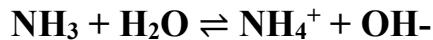
Example:

- NH₃ (weak base)
- NH₄Cl (salt)

The **Henderson-Hasselbalch equation** is an equation that is often used to perform the calculations required in preparation of buffers for use in the laboratory.

Buffer solution that formed of weak acid and its salt:

$$K_a = [\text{H}^+][\text{A}^-]/[\text{HA}] \text{ Or } [\text{H}^+] = k_a \times [\text{HA}^+]/[\text{A}^-]$$



$$\log [\text{H}^+] = \log K_a + \log [\text{acid}]/[\text{salt}]$$

Multiply by -1

$$-\log [\text{H}^+] = -\log K_a + \log [\text{salt}]/[\text{acid}]$$

$$\text{pH} = \text{p}K_a + \log [\text{salt}]/[\text{acid}]$$

Buffer solution formed of weak base and its salt:

$$K_b = [\text{NH}_4^+][\text{OH}^-]/[\text{NH}_3] \text{ or } [\text{OH}^-] = K_b \times [\text{NH}_3]/[\text{NH}_4^+]$$

$$\text{Log } [\text{OH}^-] = \text{Log } K_b + \text{Log } [\text{base}]/[\text{salt}]$$

Multiply by -1

$$-\text{Log } [\text{OH}^+] = -\text{log } K_b + \text{Log}[\text{salt}]/[\text{base}]$$

$$\text{pOH} = \text{pK}_b + \text{Log}[\text{salt}]/[\text{base}]$$

Problem 1/ Calculate the pH of buffer of 0.3M CH₃COONa in 0.09M CH₃COOH?

$$K_a = 1.8 \times 10^{-5}$$

Solution:

$$\text{pH} = \text{pK}_a + \text{Log}[\text{salt}]/[\text{acid}]$$

$$\text{pH} = -\log 1.8 \times 10^{-5} + \log (0.3 / 0.09)$$

$$\text{pH} = 4.74 + 0.522$$

$$\text{pH} = 5.262$$

Problem 2/ Calculate the pH of buffer of 0.28M NH₄Cl in 0.07M NH₃? K_b = 1.76 × 10⁻⁵

Solution:

$$\text{pOH} = \text{pK}_b + \text{Log}[\text{salt}]/[\text{base}]$$

$$pOH = -\log 1.76 \times 10^{-5} + \log (0.28 / 0.07)$$

$$pOH = 4.75 + 0.602$$

$$pOH = 5.352$$

$$pH = 14 - 5.352$$

$$pH = 8.648$$