

Magnetism

Lecture 5

Right Hand Rule

Msc. Ali Jaafar

2nd stage

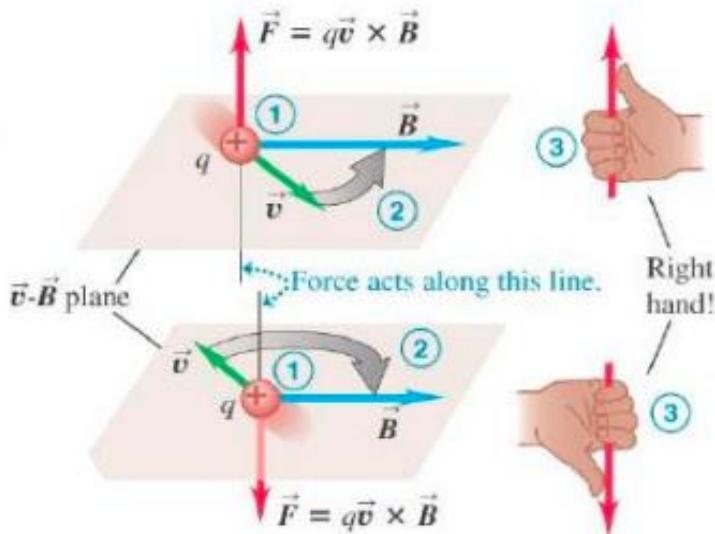
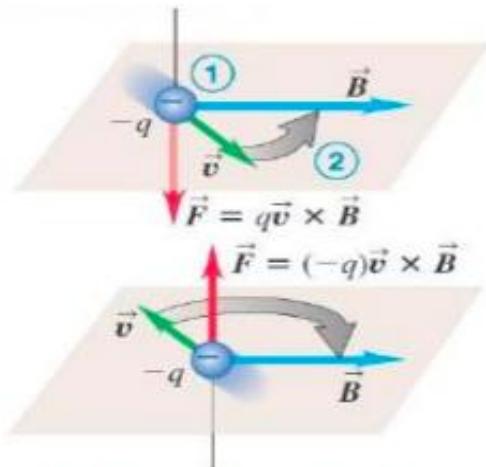
Department of medical physics Al-Mustaqlal
University-College

2025- 2026

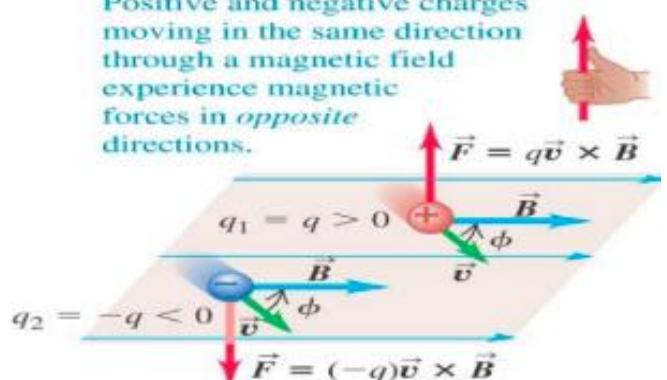
Right Hand Rule

Positive charge moving in magnetic field
→ direction of force follows right hand rule

Negative charge → F direction
contrary to right hand rule.



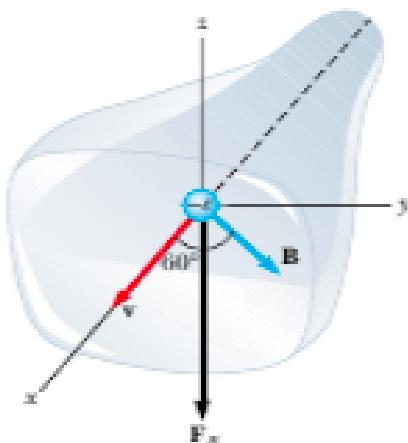
Positive and negative charges moving in the same direction through a magnetic field experience magnetic forces in *opposite* directions.



The magnitude of the magnetic force on a charged particle is: $F_B = |q| v B \sin\theta$ where θ is the smallest angle between v and B . From this expression, we see that F_B is zero when v is parallel or antiparallel to B ($\theta = 0$ or 180°) and maximum when v is perpendicular to B ($\theta = 90^\circ$).

In the SI unit $1\text{ T} = \text{N/C.M/sec} = \text{N/Amp.m}$. $1\text{ Gauss} = 10^{-4} \text{ T}$

Example 1: An electron in a television picture tube moves toward the front of the tube with a speed of $8 \times 10^6 \text{ m/s}$ along the x-axis shown in the Figure. Surrounding the neck of the tube are coils of wire that create a magnetic field of magnitude 0.025 T , directed at an angle of 60° to the x-axis and lying in the x, y plane. Calculate the magnetic force on the electron.



Solution: $F_B = |q|v \cdot B \cdot \sin\theta$

$$F_B = 1.6 \times 10^{-19} C \times 8 \times 10^6 \text{ m/sec} \times 0.025T \times \sin 60^\circ$$

$$F_B = 2.8 \times 10^{-14} N$$

Example 2: A regular magnetic field in which $B = 0.12 \text{ T}$ to the east, proton at a speed of $5 \times 10^5 \text{ m/sec}$ was thrown in the magnetic field. Find out the amount of magnetic force attached to the proton for the following cases:

a. Towards the south? b. Westward? c-Northward? d-East? e - Towards making the corner 60 to the east ?

Solution:

The proton charge is $1.6 \times 10^{-19} \text{ C}$, and the magnetic force is $F_B = q \cdot v \cdot \sin\theta$

a) Towards the south, then the angle between the magnetic field and the proton is 90°
b) Westward, then the angle between the magnetic field and the proton is 180°

$$\begin{aligned} F_B &= q v B \sin\theta \\ &= (1.6 \times 10^{-19}) \times (5 \times 10^5 \text{ m/sec}) \times (0.12 \text{ T}) \times \sin 90^\circ \\ &= 9.6 \times 10^{-15} \text{ Nt} \end{aligned}$$

b) Westward, then the angle between the magnetic field and the proton is 180°

$$\begin{aligned} F_B &= q v B \sin\theta \\ &= (1.6 \times 10^{-19}) \times (5 \times 10^5 \text{ m/sec}) \times (0.12 \text{ T}) \times \sin 180^\circ \\ &= 0 \end{aligned}$$

C) Northward, then the angle between the magnetic field and the proton is 90°

$$FB = q v B \cdot \sin\theta$$

$$= (1.6 \times 10^{-19}) \times (5 \times 10^5 \text{ m/sec}) \times (0.12 \text{ T}) \times \sin 90^\circ = 9.6 \times 10^{-15} \text{ Nt}$$

c) East, then the angle between the magnetic field and the proton is 90°
 $\theta = (1.6 \times 10^{-19}) \times (5 \times 10^5 \text{ m/sec}) \times (0.12 \text{ T}) \times \sin 180^\circ = 0$
d) e) Towards making the corner 60 to the east?

$$e) \quad \theta = (1.6 \times 10^{-19}) \times (5 \times 10^5 \text{ m/Sec}) \times (0.12 \text{ T}) \times \sin 60^\circ = 8.31 \times 10^{-15} \text{ nt}$$

H.W. Find the magnetic force for an electron moving with velocity $6 \times 10^7 \text{ m/Sec}$. In the same regular magnetic field?

Magnetic Flux and Gauss's Law for Magnetism

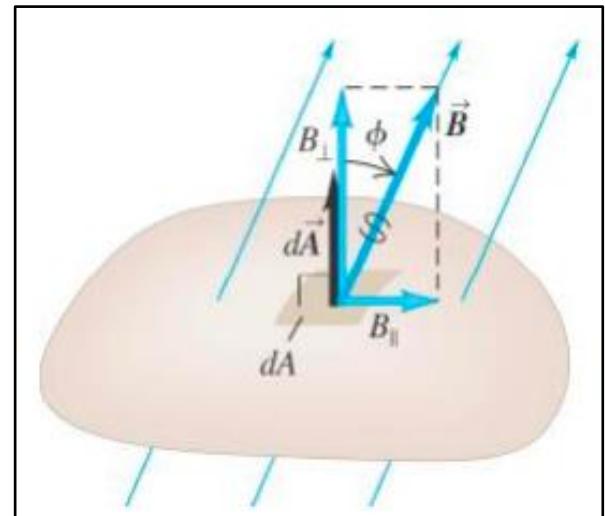
$$\Phi_B = \int B_{\perp} dA = \int B \cos\theta \cdot dA = \int \vec{B} \cdot d\vec{A}$$

Magnetic flux is a scalar quantity.

If \vec{B} is uniform:

$$\Phi_B = B_{\perp} A = B A \cos\theta \quad \dots \dots \dots (7)$$

$$1 \text{ Weber} (1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2 = 1 \text{ N} \cdot \text{m} / \text{A})$$



- Difference with respect to electric flux \Rightarrow the total magnetic flux through a closed surface is always zero. This is because there is no isolated magnetic charge ("monopole") that can be enclosed by the Gaussian surface.

$$\Phi_B = \int \vec{B} \cdot d\vec{A} = 0 \quad \dots \dots \dots (8)$$

$$B = \frac{d\Phi_B}{dA_{\perp}} \quad \dots \dots \dots (9)$$

- The magnetic field is equal to the flux per unit area across an area at right angles to the magnetic field = magnetic flux density.

Motion of Charged Particles in a Magnetic Field

- Magnetic force perpendicular to \vec{v} . It cannot change the magnitude of the velocity, only its direction.

$$\vec{F}_m = q \vec{v} \times \vec{B}$$

- \vec{F}_m does not have a component parallel to particle's motion \Rightarrow cannot do work.

- Magnitudes of F and v are constant (v perp. B) \Rightarrow uniform circular motion.

$$\vec{F}_m = |q| \cdot v \cdot B = m \frac{v^2}{R} \quad \dots \dots \dots (10)$$

Radius of circular orbit in magnetic field:

$$R = \frac{mv}{|q|B}$$

+ particle \Rightarrow counter-clockwise rotation.

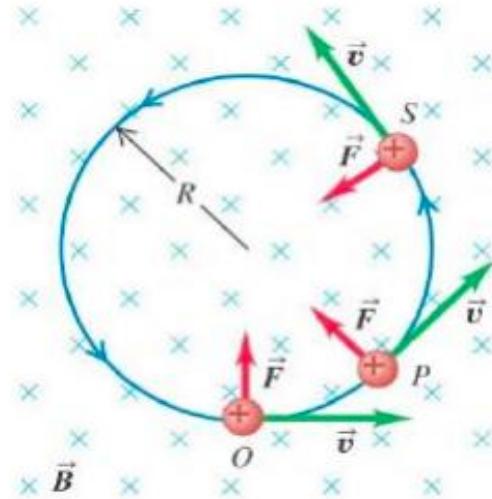
- particle \Rightarrow clockwise rotation.

Angular speed:

$$\omega = \frac{v}{R} = v \frac{|q|B}{mv}$$

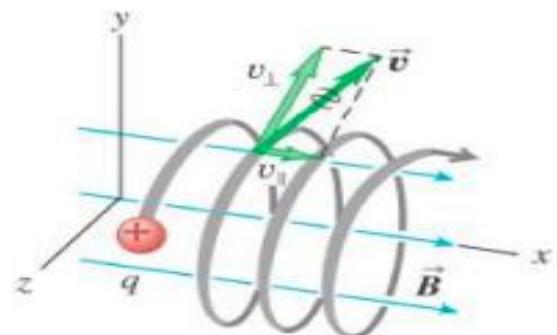
- If v is not perpendicular to $B \rightarrow v$ parallel to B constant because $F = 0$

particle moves in a helix. (R same as before, with $v = v_{\perp}$).



A charged particle will move in a plane perpendicular to the magnetic field.

This particle's motion has components both parallel (v_{\parallel}) and perpendicular (v_{\perp}) to the magnetic field, so it moves in a helical path.



1-7 Ampere's Law: states that the line integral of B and dl over a closed path is μ_0 times the current enclosed in that loop:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \cdot i_{\text{enclosed}} \quad \dots \dots \dots (11)$$

$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$ is the magnetic permeability of free space.

Example: Using Ampère's law to find the field around a long straight wire:

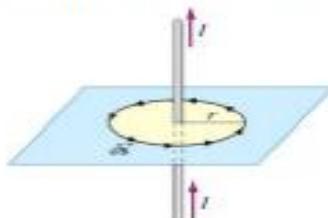
Sol:

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 \cdot i_{\text{enclosed}}$$

$$\oint d\vec{s} = 2\pi r \quad \text{the circumference of the loop}$$

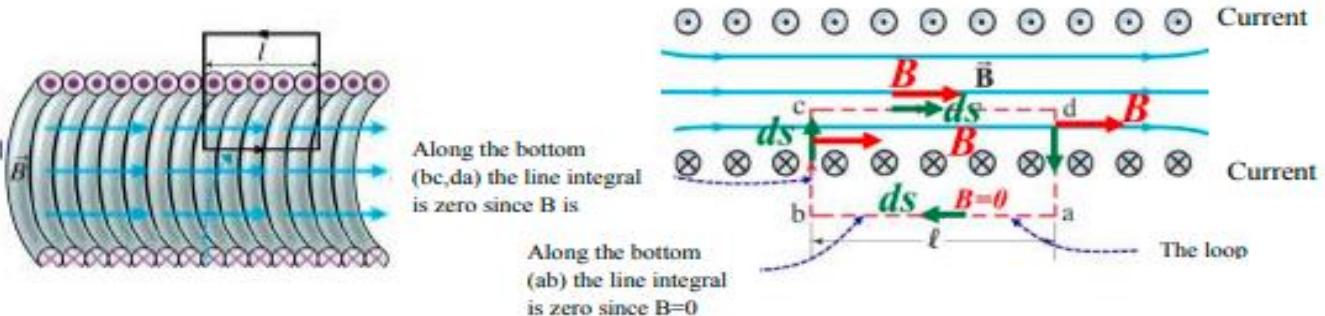
$$B \cdot 2\pi r = \mu_0 \cdot i_{\text{enclosed}}$$

$$B = \frac{\mu_0 \cdot i_{\text{enclosed}}}{2\pi r} \quad \dots \dots \dots (12)$$



Solenoid

A solenoid is a helical coil of wire with the same current I passing through each loop in the coil. A uniform magnetic field can be generated with a solenoid



$$\oint \vec{B} \cdot d\vec{s} = \mu_0 \cdot I \quad \dots \dots \dots (13)$$

$$\oint_{abcd} \vec{B} \cdot d\vec{s} = \int_a^b \vec{B} \cdot d\vec{s} + \int_b^c \vec{B} \cdot d\vec{s} + \int_c^d \vec{B} \cdot d\vec{s} + \int_d^a \vec{B} \cdot d\vec{s} = \mu_0 I_{in}$$

$\vec{B} = 0$ $\vec{B} \perp d\vec{s}$ $\vec{B} \parallel d\vec{s}$ $\vec{B} = \text{const}$

There are N loops with current I enclosed by an Amperian loop, so

$$I_{in} = N \cdot I \quad \dots \dots \dots (13)$$

$$B \int_c^d ds = \mu_0 \cdot N \cdot I \quad \dots \dots \dots (14)$$

$$Bl = \mu_0 \cdot N \cdot I \Rightarrow B = \frac{\mu_0 \cdot N \cdot I}{l} \quad \text{where } n = \frac{N}{l}$$

n is the number of turns per unit length.

$$B_{solenoid} = \mu_0 \cdot n \cdot I \quad \dots \dots \dots (15)$$

Example2: What current is required in the windings of a long solenoid that has 1000 turns uniformly distributed over a length of 0.4m, to produce at the center of the solenoid a magnetic field of magnitude 1×10^{-4} T?

Solution:

$$B = \frac{\mu_0 \cdot N \cdot I}{l}$$

$$I = \frac{B \cdot l}{\mu_0 \cdot N}$$

$$I = \frac{(1 \times 10^{-4} T) \times 0.4 m}{(4\pi \times 10^{-7} \frac{T \cdot m}{Amp}) \times 1000} = 31.8 \text{ mA}$$