

**University of Al-Mustaqlal
College of Science
Department of Medical
Physics**

Magnetism

the practical aspect

Second Stage

Wheatstone Bridge

Lec 9

Asst. lec. Ali Jaafar

Asst. lec. Zainab jassim

Mohammed abdulzahra

The objective of the experiment :

The Wheatstone Bridge experiment aims to:

1. Accurately measure an unknown resistance.
2. Understand the balance condition in electrical circuits.
3. Apply Ohm's Law and the voltage divider principle.
4. Learn the comparison method for resistance measurement.
5. Use the galvanometer as an indicator of imbalance.

Equipment used in the experiment :

- Wheatstone Bridge board
- Unknown resistance R_x
- Known resistors R_1, R_2, R_3
- DC power supply (3–6 V)
- Galvanometer
- Connecting wires
- Multimeter (if needed)

Theory of the Experiment:

The Wheatstone Bridge is a circuit used to compare an unknown resistance with known resistors under the balance condition.

The bridge consists of four resistors arranged in a diamond shape.

At balance:

$$R_1/R_2 = R_x/R_3$$

The galvanometer current becomes:

$$I_g = 0$$

Thus, the unknown resistance is:

$$R_x = R_1 R_3 / R_2$$

Where:

- (R_x): Unknown resistance
- (R1, R2, R3): Known resistors
- (I_g): Galvanometer current (zero at balance)

The method of work :

1. Connect the resistors (R1, R2, R3) to the Wheatstone Bridge board.
2. Connect the unknown resistor R_x in its proper position.
3. Connect the galvanometer between the middle nodes of the bridge.
4. Connect the DC power supply (3–6 V) to the bridge.
5. Adjust (R3) (or choose different values of R1 and R2) until the galvanometer reads zero.
6. Record the resistor values at balance.

7. Calculate the unknown resistance using:

$$R_x = R_1 R_3 / R_2$$

8. Repeat the experiment for several sets of values to obtain an average measurement.
9. Compute the percentage error:

$$\text{Error \%} = |R_{actual} - R_x/R_{actual}|$$

Trial No.	R1 (Ω)	R2 (Ω)	R3 (Ω)	Galvanometer Reading	Balanced?	Calculated Rx (Ω)
1						
2						
3						
4						
Average						

Discussion

1. The Wheatstone Bridge is mainly used for:

A) Voltage measurement
 B) Accurate resistance measurement

- C) Power measurement
- D) Current measurement
- E) Frequency measurement

2. Balance in the Wheatstone Bridge occurs when:

- A) Maximum current flows
- B) Supply voltage becomes zero
- C) All resistances are equal
- D) Galvanometer current becomes zero
- E) $R_1 + R_2 = R_x + R_3$

3. The balance condition is given by:

- A) $(R_x = R_1 + R_2)$
- B) $(R_x = R_3 + R_1)$
- C) $(R_x = R_3 R_1/R_2)$
- D) $(R_x = R_1 R_2 R_3)$
- E) $(R_x = R_1/R_3)$

4. The galvanometer is used to measure:

- A) Resistance
- B) Power
- C) AC current only
- D) Zero current at balance
- E) High voltage

5. If $R_1 = 100 \Omega$, $R_2 = 50 \Omega$, $R_3 = 200 \Omega$, then $R_x = ?$

- A) 100
- B) 200
- C) 300
- D) 400
- E) 50

6. The purpose of the DC supply in the bridge is to:

- A) Power the galvanometer
- B) Provide current for the bridge
- C) Increase resistance

- D) Balance the resistors
- E) Measure power

7. Increasing R₂ while keeping R₁ and R₃ constant causes R_x to:

- A) Increase
- B) Decrease
- C) Stay the same
- D) Become equal to R₃
- E) Become zero

8. The Wheatstone Bridge consists of:

- A) Three resistors
- B) One resistor
- C) Four resistors
- D) Five resistors
- E) Only a battery

9. If the bridge is not balanced, it means:

- A) The bridge is burnt
- B) The galvanometer is broken
- C) Galvanometer current \neq zero
- D) The supply is too weak
- E) R₁ = R₂

10. For accurate measurement of R_x, you must:

- A) Always set R₁ = R₂
- B) Keep the bridge unbalanced
- C) Record random values
- D) Make the galvanometer read zero
- E) Disconnect the supply

11. Known resistors are used because:

- A) They change automatically
- B) Their values are precise
- C) They provide higher current
- D) They need no power
- E) They produce less heat

12. When the bridge is unbalanced:

- A) R_x cannot be calculated
- B) R_x can be calculated but less accurately
- C) $R_x = R_1 + R_2$
- D) $R_x = R_3$ always
- E) Voltage becomes zero

13. The essential component of the Wheatstone Bridge is:

- A) Capacitor
- B) Transformer
- C) Galvanometer
- D) Motor
- E) Coil

14. At balance, the voltage between galvanometer terminals is:

- A) Maximum
- B) Zero
- C) Half the supply voltage
- D) Equal to the bridge current
- E) Depends on R_3

15. To increase measurement accuracy, you should:

- A) Use a high supply voltage
- B) Use random resistors
- C) Use precision resistors
- D) Remove the galvanometer
- E) Increase temperature