

Quantum Mechanics in Medicine

Lecture 4

Prof. Dr. Fouad Attia Majeed
Department of Medical Physics, Al-Mustaqbal University
fouad.attia.majeed@uomus.edu.iq

Babil, Iraq

For Third-year Students

Outline

- 1 Time-Dependent Schrödinger Equation (Free Particle)
- 2 Particle in a Force Field
- 3 Statistical Interpretation & Conservation of Probability
- 4 Worked Identities (Reference)
- 5 MCQs

Monochromatic Plane Wave

A free particle of mass m moving along $+x$ with momentum p and energy E may be represented by

$$\Psi(x, t) = A e^{i(kx - \omega t)}, \quad E = \hbar\omega, \quad p = \hbar k.$$

Using $E = \frac{p^2}{2m}$ and the operator substitutions $\hat{E} = i\hbar \frac{\partial}{\partial t}$, $\hat{p} = -i\hbar \frac{\partial}{\partial x}$, we obtain the 1D free-particle TDSE:

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2}.$$

Three-Dimensional Form

In 3D the plane wave is

$$\Psi(\mathbf{r}, t) = A e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)},$$

with position-representation operators

$$\hat{\mathbf{p}} = -i\hbar\nabla, \quad \hat{E} = i\hbar \frac{\partial}{\partial t}.$$

Therefore the TDSE becomes

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi.$$

Including a Potential

If the force derives from a potential $V(\mathbf{r}, t)$, classically $E = \frac{p^2}{2m} + V$. Promoting $E \rightarrow \hat{E}$ and $\mathbf{p} \rightarrow \hat{\mathbf{p}}$ gives

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi.$$

The Hamiltonian operator is

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t).$$

Born Interpretation and Normalization

Probability density: $\rho(\mathbf{r}, t) = |\Psi(\mathbf{r}, t)|^2$. Normalization:

$$\int_{\mathbb{R}^3} |\Psi(\mathbf{r}, t)|^2 d^3r = 1, \quad \text{for all } t.$$

Physical (square-integrable) states vanish sufficiently fast as $r \rightarrow \infty$.

Continuity Equation and Probability Current Density

From the TDSE and its conjugate one derives

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0, \quad \rho = |\Psi|^2,$$

with probability current density

$$\mathbf{j}(\mathbf{r}, t) = \frac{\hbar}{2mi} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*).$$

Using Gauss' theorem: $d/dt \int_V \rho d^3r = - \oint_S \mathbf{j} \cdot d\mathbf{S} \rightarrow 0$ as S recedes to infinity for localized Ψ .

Q1. TDSE for a free particle in 1D is derived from:

- A. Newton's second law
- B. $E = \frac{p^2}{2m}$
- C. Maxwell's equations
- D. Planck's radiation law

Q2. General solution for a definite momentum is:

- A. Wave packet
- B. Plane wave
- C. Standing wave
- D. Spherical wave

Q3. $\Psi(x, t) = Ae^{i(kx - \omega t)}$ represents:

- A. Plane wave solution
- B. Gaussian packet
- C. Bound state
- D. Stationary wave

Q4. For $p = 2 \times 10^{-24} \text{ kg m s}^{-1}$, the de Broglie wavelength is:

- A. 3.3 nm
- B. 1.7 nm
- C. 0.33 nm
- D. 6.6 nm

Q5. The time-dependent Schrödinger equation is:

- A. Linear and homogeneous
- B. Nonlinear
- C. Non-homogeneous
- D. Non-differential

Q6. A wave packet is constructed by:

- A. A single frequency wave
- B. Superposition of plane waves
- C. Delta function
- D. Classical trajectory

Q7. The energy (Hamiltonian) operator in $V(x, t)$ is:

- A. $-\frac{\hbar^2}{2m} \nabla^2 + V(x, t)$
- B. $-i\hbar \partial_t$
- C. $p^2/2m$ only
- D. ∇^2

Q8. The Hamiltonian operator is named after:

- A. Schrödinger
- B. Hamilton
- C. Born
- D. Dirac

Q9. The statistical interpretation of $|\Psi(\mathbf{r}, t)|^2$ is:

- A. Probability current density
- B. Energy density
- C. Probability density
- D. Momentum density

Q10. The normalization condition of a wavefunction is:

- A. $\int |\Psi|^2 d\tau = 1$
- B. $\int |\Psi|^2 d\tau = 0$
- C. $\int \Psi d\tau = 1$
- D. $\int \Psi d\tau = 0$

Q11. If $\Psi(x) = Ae^{-ax^2}$, find A s.t. $\int |\Psi|^2 dx = 1$:

- A. $(a/\pi)^{1/4}$
- B. $(\pi/a)^{1/2}$
- C. $a^{1/2}$
- D. $1/\pi$

Q12. Conservation of probability means:

- A. $\int |\Psi|^2 d\tau$ changes with time
- B. Normalization integral is independent of time
- C. Probability can vanish
- D. Wavefunction disappears

Q13. Probability current density is:

- A. $\frac{i\hbar}{2m}(\Psi\nabla\Psi^* - \Psi^*\nabla\Psi)$
- B. $|\Psi|^2v$
- C. $\nabla|\Psi|^2$
- D. $\hbar k/m$

Q14. The continuity equation in quantum mechanics ensures:

- A. Conservation of mass
- B. Conservation of charge
- C. Conservation of probability
- D. Conservation of momentum

Q15. For a square-integrable wavefunction, as $r \rightarrow \infty$, $\Psi \rightarrow$:

- A. ∞
- B. 0
- C. 1
- D. Constant

Q16. Electron with $E = 5 \text{ eV}$ and $V = 0$: the wave number k is

- A. $1.1 \times 10^{10} \text{ m}^{-1}$
- B. $3.6 \times 10^9 \text{ m}^{-1}$
- C. $5.2 \times 10^{10} \text{ m}^{-1}$
- D. $9.1 \times 10^8 \text{ m}^{-1}$

Q17. A wavefunction is square-integrable if:

- A. It is continuous and differentiable
- B. $\int |\Psi|^2 d\tau < \infty$
- C. It vanishes everywhere
- D. It has discontinuities

Q18. Momentum operator in 3D:

- A. $-i\hbar\nabla$
- B. $-\hbar^2\nabla^2$
- C. $-i\hbar\partial_t$
- D. ∇V

Q19. 3D plane wave solution is:

- A. $Ae^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$
- B. Ae^{ikx}
- C. Ae^{-ax^2}
- D. $\sin(kx)$

Q20. Probability conservation law:

- A. $\partial_t \rho + \nabla \cdot \mathbf{j} = 0$
- B. $\rho = |\Psi|^2$ only
- C. $\nabla^2 \rho = 0$
- D. $\mathbf{j} = \nabla \rho$