

AL- Mustaqbal University
Science College
Dep. Medical physics

Medical physics
Third Stage

Lec 5

Laser process

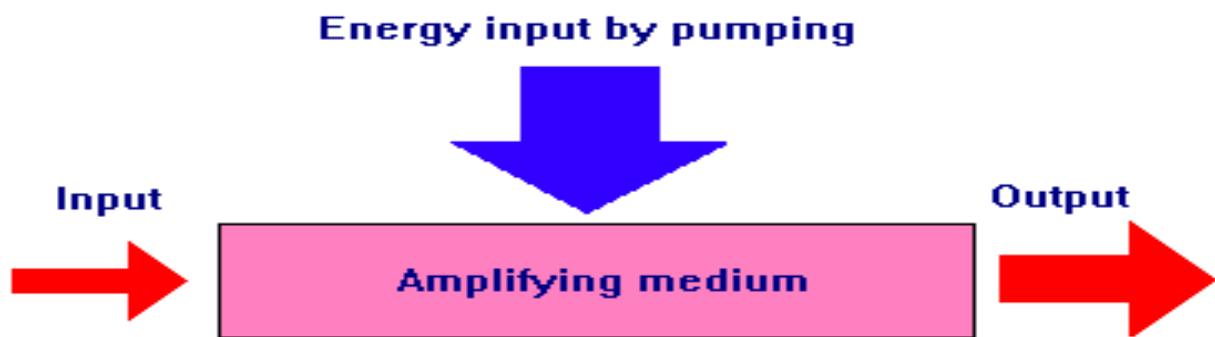
م . م علي سلمان حمادي

Laser process

Common Features of Lasers

1- Light amplifying media

- All lasers contain an amplifying substance that works to increase the intensity of light passing through it
- This substance is called the amplifying (or the gain) medium. → It can be a solid (solid state laser), a liquid (liquid laser) or a gas (gas laser).
- It contains atoms, molecules or ions in a high proportion to: store energy which is subsequently released as light.


Amplifying medium is characterized by **GAIN**

GAIN : the factor by which the intensity of the light is increased by the amplifying medium

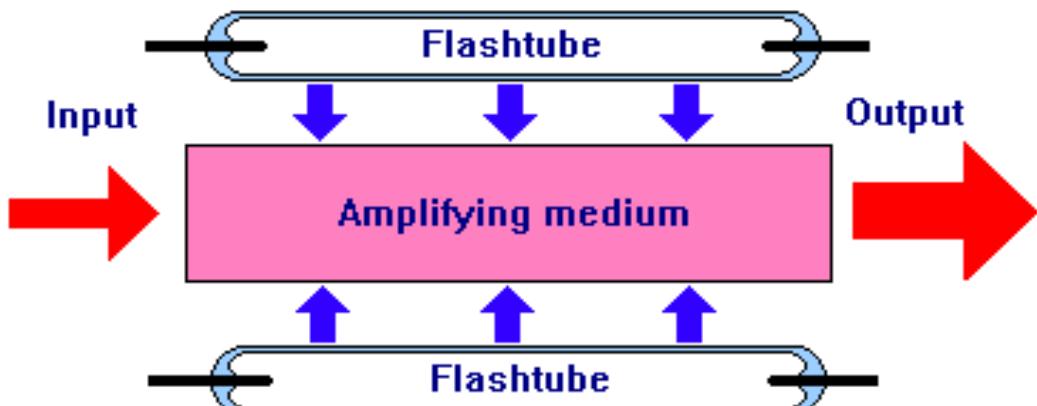
IT DEPENDS ON :

- 1- Wavelength of the incoming light.
- 2- Intensity of the incoming light.
- 3- Length of the amplifying medium (inverse proportionality).
- 4- Amount of energizing the amplifying medium (pumping).

2- Energizing Amplifying Medium (Pumping)

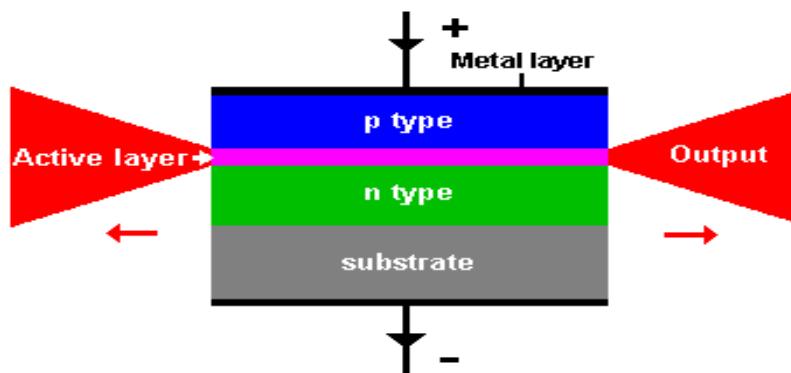
Amplifying a beam of light means putting additional energy into the beam.

THEREFORE

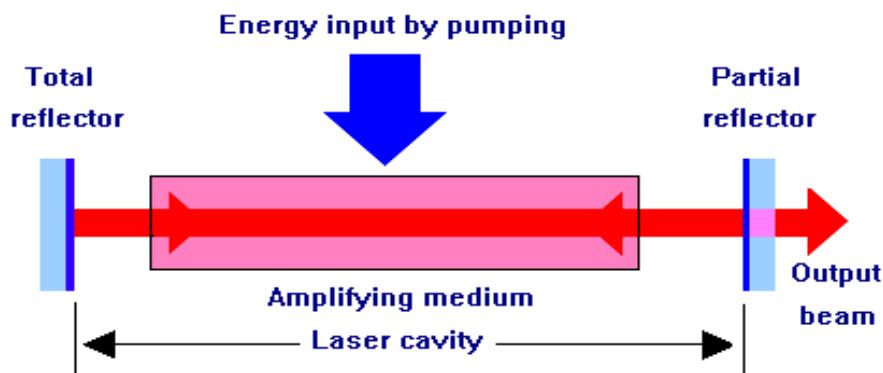

the amplifying medium must have energy fed into it to provide this energy.

The fed energy works to re-arranges the amplifying medium in some way to store the energy and then releases it as amplified light ,This process is known as "**pumping**

• Optical pumping


* Xenon-filled flashtubes around a solid state amplifying medium.

* High voltage causes electric discharge through the flash tube

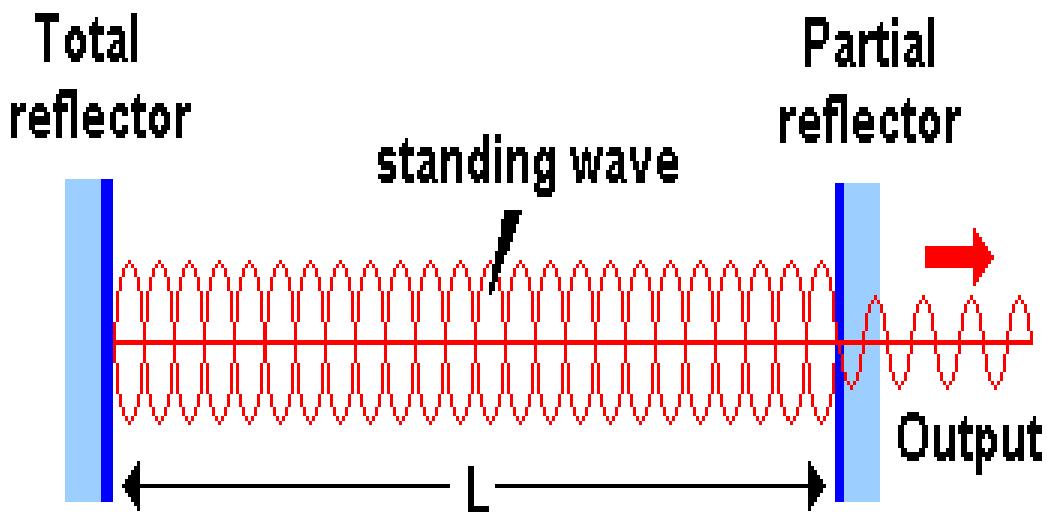


- **Electrical pumping**

electric current passes across the junction of the diode

3- Laser Oscillator

The pumped amplifying medium is positioned between


two mirrors

↓

'positive feedback'

some of the light that emerges from the amplifying medium is reflected back into it for further amplification.

An amplifier with positive feedback is known as an **oscillator**

- The space between the two mirrors is known as **the laser cavity** .
- Within the cavity, the beam undergoes multiple reflections and is amplified each time it passes through the amplifying medium .
- One of the mirrors reflects almost all of the light that falls upon it .
- The other mirror reflects between 20% and 98% of the incident light.
- This transmitted portion constitutes the output beam of the laser .

❖ Light forms standing waves between the mirrors.

❖ These waves correspond to longitudinal modes.

❖ **Each mode:**

- has a characteristic wavelength
- propagates in a characteristic direction

Lasing process and advantages of employing the laser cavity

Following pumping, spontaneous emission occurs by excited atoms

ADVANTAGES OF THE CAVITY

- The cavity ensures that the divergence of the beam is small
- This emitted light initiates stimulated emission and then increases in intensity by multiple passes through the amplifying medium.
- Only light traveling in a direction parallel to the cavity axis can undergo multiple reflections and make multiple passes through the amplifying medium.
- More divergent rays wander out of the cavity.
- **The laser cavity also improves the spectral purity of the laser beam**
- The amplifying medium amplifies light within a narrow range of wavelengths.
- Within this narrow range, only cavity modes can undergo repeated reflection up and down the cavity
- Other modes are rapidly attenuated and will not be present in the output beam.

Discussion

1. What is the amplifying substance in a laser called?

- A) Source
- B) Medium
- C) Lens
- D) Mirror
- E) Filter

Ans: B

2. The amplifying medium can be:

- A) Solid only
- B) Gas only
- C) Liquid only
- D) Solid, liquid, gas
- E) Plasma

Ans: D

3. What does the amplifying medium store?

- A) Heat
- B) Sound
- C) Energy
- D) Vibration
- E) Pressure

Ans: C

4. GAIN refers to:

- A) Energy loss
- B) Light speed
- C) Light intensity factor
- D) Wavelength shift
- E) Power loss

Ans: C

5. Gain depends on:

- A) Mirror type
- B) Medium color
- C) Wavelength
- D) Beam angle
- E) Crystal size

Ans: C

6. Which is NOT a gain factor?

- A) Wavelength
- B) Pumping
- C) Length
- D) Intensity
- E) Mirror type

Ans: E

7. Longer amplifying medium means:

- A) More gain
- B) Less gain
- C) No effect
- D) Random gain
- E) Infinite gain

Ans: B

8. Pumping provides:

- A) Cooling
- B) Energy
- C) Shielding
- D) Reflection
- E) Diffraction

Ans: B

9. Optical pumping uses:

- A) Lasers
- B) LEDs
- C) Flash tube
- D) Magnet
- E) Prism

Ans: C

10. Electrical pumping uses:

- A) Diode junction
- B) Flash tube
- C) Battery
- D) Capacitor
- E) Magnet coil

Ans: A

11. Laser oscillator needs:

- A) One mirror
- B) Two mirrors
- C) Lens
- D) Crystal only
- E) No mirrors

Ans: B

12. The laser cavity is:

- A) Medium itself
- B) Space between mirrors
- C) Source tube
- D) Cooling area
- E) Lens path

Ans: B

13. Positive feedback is provided by:

- A) Pumping
- B) Mirrors
- C) Prism
- D) Lens
- E) Diode

Ans: B

14. The highly reflective mirror reflects:

- A) 10%
- B) 50%
- C) Almost all
- D) 0%
- E) 25%

Ans: C

15. Output beam comes from:

- A) Lens
- B) Medium
- C) Partially reflecting mirror
- D) Both mirrors
- E) Flash tube

Ans: C

16. Standing waves inside cavity are:

- A) Transverse modes
- B) Longitudinal modes
- C) Random modes
- D) Lateral modes
- E) No modes

Ans: B

17. Each cavity mode has:

- A) One direction only
- B) One frequency only
- C) Wavelength & direction
- D) Polarization only
- E) No property

Ans: C

18. Divergence is reduced by:

- A) Gain
- B) Pumping
- C) Laser cavity
- D) Flash tube
- E) Cooling

Ans: C

19. Stimulated emission is triggered by:

- A) Spontaneous emission
- B) Pumping
- C) Cooling
- D) Mirror
- E) Flash tube

Ans: A

20. Only rays parallel to cavity axis:

- A) Are lost
- B) Are amplified
- C) Are absorbed
- D) Scatter away
- E) Stop

Ans: B

21. Divergent rays in cavity:

- A) Reflected
- B) Amplified
- C) Wander out
- D) Focused
- E) Stored

Ans: C

22. Spectral purity is improved by:

- A) Pumping
- B) Mirrors
- C) Laser cavity
- D) Cooling
- E) Gain

Ans: C

23. Amplifying medium amplifies:

- A) Wide wavelengths
- B) Single color
- C) Narrow range
- D) Infrared only
- E) UV only

Ans: C

24. Modes outside cavity range are:

- A) Amplified
- B) Attenuated
- C) Reflected
- D) Stored
- E) Multiplied

Ans: B

25. The final laser output is:

- A) Divergent, weak
- B) Pure, collimated
- C) Wide, incoherent
- D) Random, strong
- E) Unstable, weak

Ans: B