
MEDICAL IMAGING PROCESSING

FOURTH STAGE

2025-2026

Image Compression

 BY

MS.c Mortada Sabri MS.c Najwan Thaeer Ali

 Lec 6

1

Outline

2

 Introduction to Image/Text Compression

 Coding Redundancy

 Steps of Huffman Encoding

 Huffman Encoding Example

 Advantages of Huffman Coding

Introduction

3

Data compression is an important aspect of contemporary digital systems that

require storing and transmitting large volumes of images, text, and multimedia.

Huffman encoding is one of the most popular ways of lossless compression and is a

technique used to assign symbols with varying lengths of binary codes based on their

occurrence rate.

Symbols with higher frequency are assigned shorter codes, and those least frequent

are assigned longer ones, so the total number of bits needed to represent the

information is less. Since Huffman coding does not lose data, one can perfectly

reassemble the original data; therefore, it is very useful in image compression, file

compression (ZIP/GZIP), and text encoding.

Image Compression

CODING: Fewer bits to represent frequent symbols.

COMPRESSION: The process of coding that reduces the total number of bits needed to

represent information.

Objective: reduce the amount of data required to represent an image.

There are two main categories:

Lossless compression: All information is retained. Suitable for computer programs, medical

images, GIS, .gif files.

Loss compression: Some information is lost. Used in TV signals, teleconferencing, .mp3,jpg.

4

Image Compression
General Data Compression Scheme:

Input data → Encoder (compression) → Storage/Network → Decoder

(decompression) → Output data.

Compression ratio = (B_0 / B_1)

Where:

(B_0) = bits before compression

(B_1) = bits after compression

5

Frequency Analysis

Frequency Analysis First, we analyze the frequency of each character (or symbol)

in the input data. This involves counting how many times each character appears in

the data (Figure 2). This frequency analysis helps determine which characters occur

most and least frequently.

6

Run-Length Encoding (RLE)
RLE is a simple form of compression where runs of data (repeated values) are

stored as a single value and count.

Useful for data containing many runs (icons, line drawings, animations).

Not useful for data without many runs.

Example 1

Screen of black text on white background: long runs of white pixels, short runs of

black pixels. Hypothetical scan line (W=white, B=black):

WWWWWWWWWWWWWBBBBWWWWWWWWBBBWWWWWWWWWWW

Run-length encoding result:

13W 4B 8W 3B 11W

Run-length code uses 10 symbols instead of 39.

7

Number of symbols= runs × 2

Fixed-Length vs Variable-Length Codes

8

Example 2

Characters: a, b, c, d, e, f

Frequencies: 45, 13, 12, 16, 9, 5

Sol //.
We have 6 symbols → How many bits do we need to represent them?

Fixed-length code must have at least 3 bits:

Total number of symbols (total occurrences):45 + 13 + 12 + 16 + 9 + 5 = 100

Each symbol uses 3 bits:100 × 3 = 300 bits

Fixed length storage = 300 bits

Huffman Tree

From this tree we extract the codes

(left=0, right=1):

9

We recalculated each code (frequency × code length) as in the previous

example:

a: 45 × 1 = 45

b: 13 × 3 = 39

c: 12 × 3 = 36

d: 16 × 3 = 48

e: 9 × 4 = 36

f: 5 × 4 = 20

45 + 39 + 36 + 48 + 36 + 20 = 224 (Variable length storage = 224 bits).

Compression ratio = 300 / 224 = 1.339

character a b c d e f

frequency 45 13 12 16 9 5

fixed code 000 001 010 011 100 101

Variable code 0 101 100 111 1101 1100

Huffman Coding

Huffman coding is a variable-length coding technique in which shorter

codewords are assigned to input values with high probabilities, and longer

codewords are assigned to those with low probabilities. The encoder takes fixed-

length input characters and produces variable-length output bits, achieving

efficient compression.

10

Advantages of Huffman Coding

Efficient lossless compression when symbol frequencies are different.

Simple to implement and meets practical requirements for time and memory in

most applications.

Provides a representation close to the minimum entropy when symbols are

independent and their probability distribution is known.

Useful in real-time systems: can be combined with other techniques (such as

transforms, RLE, or predictive coding) to improve image/video compression.

Flexible: generates variable-length codes that efficiently exploit statistical

redundancy

11

Limitations and Notes

When Not to Use Huffman Coding

Not ideal when symbols are time-correlated:

If there are strong relationships or predictable patterns between successive symbols,

other methods (such as context-based models combined with arithmetic coding) can

achieve better compression.

Depends on knowing or estimating symbol frequencies:

If the probability distribution of symbols changes frequently, you may need to

rebuild the code tree or use dynamic Huffman coding, which increases complexity.

Minimum code length is 1 bit:

In cases of extremely skewed probabilities, arithmetic coding performs better

because it can represent fractional probabilities and achieve compression closer to

the theoretical limit.

12

13

Good luck
everyone

14

