MEDICAL IMAGING PROCESSING
FOURTH STAGE

2025-2026

Image Compression

BY

MS.c Mortada Sabri MS.c Najwan Thaeer Ali

Lec 6

Outline

» Introduction to Image/Text Compression
» Coding Redundancy

» Steps of Huffman Encoding

» Huffman Encoding Example

» Advantages of Huffman Coding

Introduction

Data compression is an important aspect of contemporary digital systems that
require storing and transmitting large volumes of images, text, and multimedia.
Huffman encoding is one of the most popular ways of lossless compression and is a
technique used to assign symbols with varying lengths of binary codes based on their
occurrence rate.

Symbols with higher frequency are assigned shorter codes, and those least frequent
are assigned longer ones, so the total number of bits needed to represent the
information is less. Since Huffman coding does not lose data, one can perfectly
reassemble the original data; therefore, it is very useful in image compression, file
compression (ZIP/GZIP), and text encoding.

(a)

5 : I \ Compressed
Input Image Pre-processing > Encoding fI':[E

(b)

Compressed Decompressed
file Dhzocoding Postprocessing Image

Image Compression

CODING: Fewer bits to represent frequent symbols.

COMPRESSION: The process of coding that reduces the total number of bits needed to
represent information.

Objective: reduce the amount of data required to represent an image.

There are two main categories:

Lossless compression: All information is retained. Suitable for computer programs, medical
Images, GIS, .gif files.

Loss compression: Some information is lost. Used in TV signals, teleconferencing, .mp3,jpg.

SMART COMPRESSION: OVERCOMPRESSED:
" QUALITY PRESERVED > IMPACTED QUALITY

Image Compression

General Data Compression Scheme:

Input data — Encoder (compression) — Storage/Network — Decoder
(decompression) — Output data.

Compressionratio=(B _0/B_1) Input: ABRACADABRA
Where: '

(B_0) = bits before compression Gl thtpen Eceden
(B_1) = bits after compression o

B:111
0111110010101000 1111100

|
R:110 ‘

C:101

D:100

Frequency Analysis

Frequency Analysis First, we analyze the frequency of each character (or symbol)
In the input data. This involves counting how many times each character appears in
the data (Figure 2). This frequency analysis helps determine which characters occur

most and least frequently.

Input: ABRACADABRA

Frequency Table: A:5| B:2 [R:2|/C:1/ D:1

Figure 2: Frequency Analysis Table (source: image by the author).

Run-Length Encoding (RLE)

RLE is a simple form of compression where runs of data (repeated values) are
stored as a single value and count.

Useful for data containing many runs (icons, line drawings, animations).
Not useful for data without many runs.

Example 1

Screen of black text on white background: long runs of white pixels, short runs of
black pixels. Hypothetical scan line (W=white, B=black):

wwwwwwwwwwwwwBBBBWWWWWWWwWwWBBBWWWWWWWWWWW
Run-length encoding result:

13W 4B 8W 3B 11W
Run-length code uses 10 symbols instead of 39.

Number of symbols=runs x 2

3
Fixed-Length vs Variable-Length Codes

Example 2

Characters: a, b, c,d, e, f .
Frequencies: 45, 13, 12, 16, 9, 5 6 >4 =72
Sol //. 6 <8 — 32

We have 6 symbols — How many bits do we need to represent them?

Fixed-length code must have at least 3 bits:

Total number of symbols (total occurrences):45+13+12+16+9+5 =100
Each symbol uses 3 bits:100 x 3 = 300 bits
Fixed length storage = 300 bits

[1e@]
/A
Huffman Tree
a[45] [55]
/A
From this tree we extract the codes [251 [3€]
(left=0, right=1): !\ FoA
c[12] b[13] [14] d[16]

f A
f[5] e[9]

. N
n-_-n--

5
000 001 010 011 100 101
Variable code 0 101 100 111 1101 1100

We recalculated each code (frequency x code length) as in the previous
example:

a.45x1 =45

b: 13 x 3 =39

c:12 x3=36

d: 16 x 3 =48

e:9%x4=36

f:5x4=20

45 + 39 + 36 + 48 + 36 + 20 = 224 (Variable length storage = 224 bits).
Compression ratio =300 / 224 = 1.339

Huffman Coding

Huffman coding is a variable-length coding technique in which shorter
codewords are assigned to input values with high probabilities, and longer
codewords are assigned to those with low probabilities. The encoder takes fixed-
length nput characters and produces variable-length output bits, achieving

efficient compression.

Advantages of Huffman Coding

CEfficient lossless compression when symbol frequencies are different.

dSimple to implement and meets practical requirements for time and memory in

most applications.

CProvides a representation close to the minimum entropy when symbols are

independent and their probability distribution is known.

dUseful in real-time systems: can be combined with other techniques (such as

transforms, RLE, or predictive coding) to improve image/video compression.

CFlexible: generates variable-length codes that efficiently exploit statistical

redundancy

Limitations and Notes

When Not to Use Huffman Coding

CINot ideal when symbols are time-correlated:
If there are strong relationships or predictable patterns between successive symbols,

other methods (such as context-based models combined with arithmetic coding) can
achieve better compression.

C1Depends on knowing or estimating symbol frequencies:
If the probability distribution of symbols changes frequently, you may need to
rebuild the code tree or use dynamic Huffman coding, which increases complexity.
COMinimum code length is 1 bit:
In cases of extremely skewed probabilities, arithmetic coding performs better

because it can represent fractional probabilities and achieve compression closer to
the theoretical limit.

Example 3:

A small example will make this clear. Suppose we have a 2-bit greyscale image with only
four grey levels: 0, 1, 2, 3, with the probabilities 0.2, 0.4, 0.3 and 0.1 respectively. The
following table shows fixed length and variable length codes for this image:

Grey value | Probability | Fixed code | Variable code
0 (0.2 00 000
| 0.4 01 |
2 0.3 10 01
3 0.1 11 001

Now consider how this image has been compressed. Each grey value has its own unique identifying
code. The average number of bits per pixel can be easily calculated as the expected value (in a
probabilistic sense):

L= (02%3)+(04%1)+(03*2)+(0.1*3)=1.9

Notice that the longest codewords are associated with the lowest probabilities. This average is indeed
smaller than 2. This can be made more precise by the notion of entropy, which is a measure of the
amount of information

GOOD LUCK

EVERYONE

