

رسم الدوال (Graph of Curves)

To graph the curve of a function, we can follow the following steps:

1. Find the domain and range of the function.
2. Check the symmetry of the function
3. Find (if any found) points of intersection with x -axis and y -axis.
4. Choose some another points on the curve.
5. Draw a smooth line through the above points.

Example 3: Sketch the graph of the curve $y = f(x) = x^2 - 1$

Sol.:

Step 1: Find Df , Rf of the function?

$Df = (-\infty, \infty)$;

To find Rf : we must convert the function from $y = f(x)$ into $x = f(y)$.

$$y = x^2 - 1$$

$$y = x^2 - 1 \rightarrow x^2 = y + 1$$

$$x = \pm\sqrt{y + 1}$$

$$\text{So } y + 1 \geq 0 \Rightarrow y \geq -1 \Rightarrow Rf = (-1, \infty)$$

Step 2: Find x and y intercept:

To find x -intercept put $y=0 \rightarrow x^2 - 1 = 0 \rightarrow x = \pm 1$

So x -intercept are $(-1, 0)$ and $(+1, 0)$.

To find y -intercept put $x=0 \rightarrow y = 0 - 1 \rightarrow y = -1$

So y -intercept is $(0, -1)$.

Step 3: check the symmetry:

$$x^2 - y - 1 = 0$$

$$f(x, -y) = x^2 + y - 1 \neq f(x, y)$$

Lecture (5)

$f(-x, y) = x^2 - y - 1 = f(x, y)$ so that the function is symmetry about y.

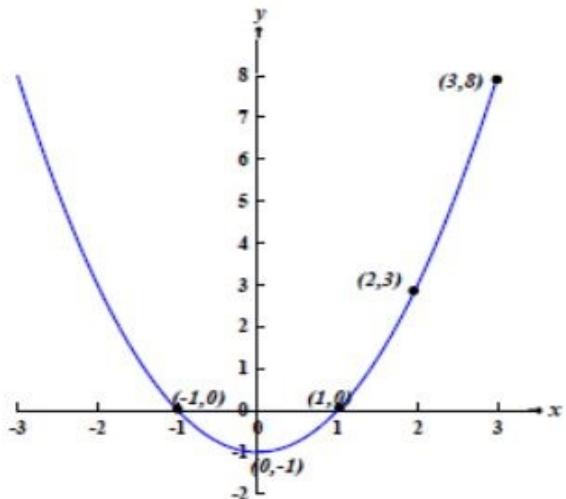
$f(-x, -y) = x^2 + y - 1 \neq f(x, y)$

Step 4: Choose some another point on the curve.

x	y
2	3
3	8

(2,3) , (3,8)

Step 5: Draw smooth line through the above points



H.W

1- $y = 3x^2 - 2$

2- $y^2 = 4x - 1$

Lecture (4)

DERIVATIVES المشتقة

the definition of derivative of the function $f(x)$ and this denoted by y' or $\frac{dy}{dx}$ or $\frac{d}{dx}f(x)$ or $D_x f(x)$ or $f'(x)$ and given by the formula

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Example1: Find the derivative of the function $f(x) = x^2$ using the definition of derivative.

$$\text{Sol: } f(x) = x^2$$

$$f(x + \Delta x) = (x + \Delta x)^2$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{(x^2 + 2x\Delta x + \Delta x^2) - x^2}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{(2x\Delta x + \Delta x^2)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{\Delta x(2x + \Delta x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} (2x + \Delta x) = 2x + 0 = 2x$$

Lecture (5)

Example2: Find the derivative of the function $f(x) = 3x$ using the definition of derivative.

Sol: $f(x) = 3x$

$$f(x + \Delta x) = 3(x + \Delta x)$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{3(x + \Delta x) - 3x}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{3x + 3\Delta x - 3x}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{3\Delta x}{\Delta x} = 3$$