

Lecture (2)

Example 8: Find the line L1 passes through the point $P(1,2)$ and parallel the line $L2: x + 2y = 3$.

SOL:

$$L1: P(1,2) \quad M=???$$

$$L2: x + 2y = 3.$$

$L1$ parallel the line $L2$ so that $m1=m2$.

$$x + 2y = 3$$

$$y = -\frac{1}{2}x + \frac{3}{2}$$

then $m2 = -\frac{1}{2}$ so that $m1 = -\frac{1}{2}$

$$y = y_1 + m(x - x_1)$$

$$y = 2 + \left(-\frac{1}{2}\right)(x - 1)$$

$$y = 2 + \left(-\frac{1}{2}x + \frac{1}{2}\right)$$

$$y = -\frac{1}{2}x + \frac{5}{2}$$

H.W:

Find the line L1 passes through the point $(-2,2)$ and perpendicular to the line $L2 : 2x + y = 4$.

Lecture (2)

The Distance from a Point to a Line:

The distance (d) between the line L is $Ax + By + C = 0$ and the point $P(x, y)$:

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

Example 9: Find the distance from the point $P(2,1)$ to the line $y = x + 2$

SOL:

1- put the line in the general form $Ax + By + C = 0$

$$y = x + 2$$

$$-x + y - 2 = 0$$

so that $A = -1$, $B = 1$, $C = -2$, $x_1 = 2$, $y_1 = 1$

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} = \frac{|-1 * (2) + 1 * (1) + (-2)|}{\sqrt{(-1)^2 + (1)^2}}$$

$$= \frac{|-3|}{\sqrt{2}} = \frac{3}{\sqrt{2}}$$

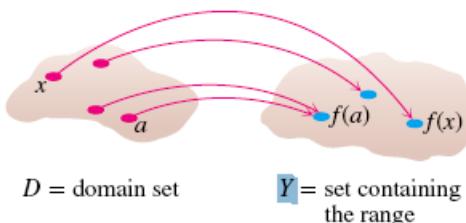
H.W:

1-Find the distance from the point $P(3,2)$ to the line $y = 3x - 4$.

2-Find the distance from the point $P(-4,1)$ to the line $y = -2x + 1$.

3- Find the following:

- The slope of the line $2x + 3y - 5 = 0$?
- The distance from the above line to the point $P(-1,0)$.



الدوال Functions

DEFINITION: Function

A **function** is a set D (domain) to a set R (range) is a rule that assigns to unique (single) element $f(x) \in R$ to each element $x \in D$.

$F: X \rightarrow F(X)$ it means that f sends x to $f(x)=y$

D = domain set

Y = set containing the range

- The set of x is called the "Domain" of the function (D_f).
- The set of y is called the "Range" of the function (R_f).

Domain (D_f): is the set of all possible inputs (x-values).

Range (R_f): is the set of all possible outputs (y-values).

Note: To find Domain (D_f) and the Range (R_f) the following points must be noticed:

- 1- The denominator in a function must not equal zero (never divide by zero).
- 2- The values under even roots must be positive.

Examples: Find the Domain (Df) and Range (Rf) of the following functions:

1- $y = f(x) = \frac{1}{x}$

Sol: denominator must not equal zero

$$x \neq 0$$

✓ $Df = R \setminus \{0\}$

To find Rf : we must convert the function from $y=f(x)$ into $x=f(y)$.

$$y = \frac{1}{x} \rightarrow x = \frac{1}{y}$$

✓ $Rf = R \setminus \{0\}$.

2- $y = \sqrt{3 - x}$

$$3 - x \geq 0 \rightarrow 3 \geq x$$

✓ $Df = \{x \in R \mid x \leq 3\}$

To find Rf : we must convert the function from $y=f(x)$ into $x=f(y)$.

$$y = \sqrt{3 - x}$$

$$y^2 = 3 - x$$

$$x = 3 - y^2$$

✓ $Rf = \{y \in R\}$.

H.W: Find the Domain (Df) and Range (Rf) of the following functions:

1- $y = \frac{1}{x^2}$

2- $y = 2x^2$

3- $y = \sqrt{5 - 2x}$

Lecture (2)

Sums, Difference, Product and Quotients of Functions:**جمع، طرح، ضرب وقسمة الدوال**

Definition: If F and G are functions, then we define the functions

- ✓ Sum $\rightarrow (F+G)(x) = F(x) + G(x)$
- ✓ Difference $\rightarrow (F - G)(x) = F(x) - G(x)$
- ✓ Product $\rightarrow (F * G)(x) = F(x) * G(x)$
- ✓ Quotient $\rightarrow (F / G)(x) = F(x) / G(x)$, where $g(x) \neq 0$

Example 1: Combining Functions Algebraically

The function defined by the formulas

$$f(x) = \sqrt{x} \text{ and } g(x) = \sqrt{1-x}$$

Function	Formula
$f + g$	$(f + g)(x) = \sqrt{x} + \sqrt{1-x}$
$f - g$	$(f - g)(x) = \sqrt{x} - \sqrt{1-x}$
$g - f$	$(g - f)(x) = \sqrt{1-x} - \sqrt{x}$
$f \circ g$	$(f \circ g)(x) = f(x)g(x) = \sqrt{x(1-x)} = \sqrt{x-x^2}$
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$

H.W: Combining Functions Algebraically The function defined by the formulas $f(x) = 3x$ and $g(x) = 1 - x^2$.