

Quantum Mechanics in Medicine: From Atoms to Diagnosis and Therapy

Lecture 8

Presented by:
Prof. Dr. Fouad Attia Majeed
Department of Medical Physics, Al-Mustaql University, Babil, Iraq
fouad.attia.majeed@uomus.edu.iq

Third-Year Students

Outline

- 1 Introduction
- 2 Fundamentals of Quantum Theory
- 3 Quantum Behavior in Biological Systems
- 4 Quantum Mechanics in Imaging
- 5 Quantum Mechanics in Therapy
- 6 Emerging Quantum Technologies
- 7 MCQ Review

Why Quantum Mechanics Matters in Medicine

Quantum mechanics explains how energy and matter behave at the smallest possible scales inside atoms and nuclei. In medicine, these quantum processes determine how radiation interacts with tissue, how magnetic resonance reveals anatomical details, and how light energy can stimulate healing or destroy tumors.

Every modern medical imaging or treatment system MRI, PET, SPECT, CT, laser therapy relies on quantum rules that govern the behavior of subatomic particles. Understanding these principles allows medical professionals to interpret diagnostic data correctly and to innovate new technologies for patient care.

The Quantum World in Simple Terms

Quantum mechanics introduces three main ideas:

- **Waveparticle duality:** Matter and light behave as both particles and waves. This explains how photons interact with tissues and why electrons in atoms occupy stable orbits.
- **Quantization of energy:** Atoms absorb or emit energy only in discrete amounts called quanta, which defines the specific wavelengths of X-rays and laser beams.
- **Probability:** Events at the quantum scale cannot be predicted with certainty; instead, they follow statistical probabilities. This explains why radioactive decay is described by a half-life.

These principles underpin all radiation-based diagnostic and therapeutic procedures in medicine.

Quantum Effects Inside Living Cells

Biological processes such as enzyme reactions, photosynthesis, and DNA replication depend on quantum-scale energy transfers. Electrons move through proteins via quantum tunneling, ensuring fast and efficient biochemical reactions.

DNA itself exhibits quantum behavior: electrons can move between base pairs, sometimes causing mutations that lead to disease. Understanding these microscopic mechanisms helps in designing drugs that stabilize DNA and prevent unwanted mutations, especially in cancer research.

Quantum Effects in the Brain and Consciousness

The brain's neurons communicate using electrical impulses carried by ions and electrons quantum particles that move through microscopic channels. Some scientists, like Penrose and Hameroff, have proposed that microtubules inside neurons may support quantum coherence, meaning they can hold information in a delicate quantum state for a brief moment. While this theory remains controversial, it has inspired research into how anesthesia works, how memory is stored, and whether quantum-level processes might contribute to consciousness or mental health.

Magnetic Resonance Imaging (MRI)

MRI relies on the quantum property of nuclear spin. When hydrogen atoms in the body are placed in a strong magnetic field, their spins align like tiny magnets. A pulse of radiofrequency energy flips these spins, and when they relax back, they emit measurable signals.

The quantum interactions between magnetic fields and atomic nuclei create highly detailed 3D images of soft tissues without ionizing radiation. The brightness of each region depends on relaxation times (T1, T2), which are determined by the quantum environment of hydrogen in water and fat molecules.

Positron Emission Tomography (PET) and SPECT

Both PET and SPECT imaging depend directly on quantum decay events. In PET, a positron-emitting isotope releases a particle that annihilates with an electron, producing two photons moving in opposite directions at 511 keV each. Detectors record these photons to build a 3D image of metabolism.

In SPECT, single gamma photons from isotopes like Technetium-99m interact with detectors via the photoelectric and Compton effects quantum processes that determine how photons scatter and deposit energy. Understanding these effects is essential to improve image resolution and minimize radiation dose.

Radiation Therapy and Particle Interactions

Radiation therapy uses high-energy photons, electrons, or ions to damage the DNA of cancer cells. The energy transfer is quantized each photon carries a fixed amount of energy determined by its frequency.

Quantum scattering theory explains how these photons interact with atoms, allowing precise modeling of dose distribution. Modern linear accelerators and proton therapy systems rely on these principles to maximize tumor destruction while protecting nearby healthy tissues.

Lasers are direct applications of quantum theory. The term laser stands for light amplification by stimulated emission of radiation. When electrons in atoms are excited to higher energy levels, they can release photons in perfect synchrony when triggered.

This coherent, monochromatic light is used in eye surgery, dermatology, and photodynamic cancer therapy. The exact wavelength and intensity are controlled at the quantum level to ensure safe and precise treatment.

Quantum Sensors and Diagnostics

Quantum sensors are devices that exploit the extreme sensitivity of quantum states to detect small changes in magnetic or electric fields. They can measure brain activity (magnetoencephalography), monitor heart signals, and even identify molecular vibrations associated with early-stage cancer.

By detecting biological events at the scale of single atoms, these sensors promise earlier, non-invasive, and highly accurate medical diagnostics far beyond current imaging capabilities.

Quantum Computing and Medical Data

Quantum computers use qubits, which can exist in multiple states at once, unlike classical bits that are only 0 or 1. This allows them to analyze huge medical datasets, model complex molecules, and simulate drug interactions much faster than current computers.

Future applications include optimizing radiation therapy plans in real time, decoding entire genomes within minutes, and designing personalized drug regimens based on molecular quantum simulations.

Quantum Biology and Healing Potential

Recent studies show that quantum coherence helps plants transfer energy efficiently during photosynthesis. Similar effects may exist in human cells, allowing efficient communication and repair at the molecular level. Exploring these ideas could lead to breakthroughs in regenerative medicine and nanomedicine where quantum principles guide the design of materials that interact safely and intelligently with biological systems.

Q1. Quantum mechanics primarily studies:

- A) The motion of planets
- B) Behavior of matter and energy at atomic scales
- C) Chemical reactions only
- D) Electrical circuits

Q2. The smallest unit of energy in quantum theory is called:

- A) Molecule
- B) Quantum
- C) Atom
- D) Proton

Q3. Waveparticle duality means:

- A) Energy and matter behave only as particles
- B) Matter and light behave both as waves and particles
- C) Light travels only in straight lines
- D) Waves and particles are unrelated

Q4. Radioactive decay follows:

- A) Deterministic law
- B) Statistical probability
- C) Newtons second law
- D) Ohms law

Q5. The term quantization of energy means:

- A) Energy changes continuously
- B) Energy is emitted or absorbed in discrete packets
- C) Energy has no limits
- D) Energy cannot be transferred

Q6. Which phenomenon allows a particle to pass through a barrier it classically cannot cross?

- A) Diffraction
- B) Quantum tunnelling
- C) Reflection
- D) Refraction

Q7. MRI depends on which property of hydrogen atoms?

- A) Density
- B) Color
- C) Nuclear spin
- D) Charge magnitude

Q8. The T1 and T2 times in MRI represent:

- A) Sound wave reflections
- B) Quantum relaxation times of nuclear spins
- C) Chemical binding times
- D) Photon emission times

Q9. PET imaging relies on:

- A) X-ray absorption
- B) Positron - electron annihilation producing photons
- C) Magnetic resonance of nuclei
- D) Thermal energy emission

Q10. The two photons in PET each have an energy of:

- A) 100 keV
- B) 250 keV
- C) 511 keV
- D) 1 MeV

Q11. SPECT imaging uses:

- A) Sound waves
- B) Gamma photons from radionuclides
- C) Electrons
- D) Infrared light

Q12. The Compton effect and photoelectric effect describe:

- A) Classical collisions
- B) Quantum interactions between photons and matter
- C) Magnetic resonance
- D) Reflection of light only

Q13. Radiation therapy destroys cancer cells by:

- A) Heating tissue macroscopically
- B) Quantized energy transfer causing DNA damage
- C) Stimulating enzyme reactions
- D) Blocking oxygen supply

Q14. Laser stands for:

- A) Light Amplification by Stimulated Emission of Radiation
- B) Light Application by Surface Emission Reaction
- C) Linear Amplified Signal Energy Reflection
- D) None of the above

Q15. The coherence of a laser beam means:

- A) Light waves are out of phase
- B) Photons move in random directions
- C) All photons have the same phase and frequency
- D) The light is invisible

Q16. Quantum sensors can detect:

- A) Temperature only
- B) Macroscopic pressure
- C) Extremely small magnetic or electric fields
- D) Visible colors only

Q17. A qubit in quantum computing can exist in:

- A) Only one state (0 or 1)
- B) Both 0 and 1 simultaneously
- C) A random undefined state
- D) Only a vacuum

Q18. Quantum computing can accelerate:

- A) Genetic data analysis and drug simulations
- B) Manual record keeping
- C) Blood pressure measurements
- D) X-ray film development

Q19. Quantum biology explores:

- A) Gravity in large bodies
- B) Quantum coherence in biological molecules
- C) Thermal expansion of bones
- D) Simple classical chemical bonds

Q20. Quantum coherence observed in photosynthesis helps:

- A) Produce more chlorophyll
- B) Efficient energy transfer between molecules
- C) Protect leaves from sunlight
- D) Increase water absorption