



**University of Al-Mustaqbal  
College of Science  
Department of Medical  
Physics**



# **Electrical Material**

**First Stage**

**Lecture name : Current & Resistance**

**Lecture number : 6**

**Name of lecturer**

**Asst lec. Israa Hussein**

# What is Electric Current?

## 1. Meaning of Electric Current

Electric current means the **flow of electric charges** (electrons) inside a wire.

- Charges move when the circuit is **closed**
- Current flows only if there is a **battery or power source**

---

## 2. Direction of Current

- Current flows from **positive (+)** to **negative (-)**
- Electrons move in the opposite direction

**Current:** + -----> -

**Electrons:** - <----- +

---

## 3. Unit of Current

- Unit: **Ampere (A)**
- Large current → bright bulb
- Small current → dim bulb

## Simple Idea of Current Flow

### 1. Water Flow Analogy

Electric current is like **water flowing in a pipe**:

| Electricity    | Water      |
|----------------|------------|
| <b>Battery</b> | Water pump |
| <b>Current</b> | Water flow |
| <b>Wire</b>    | Pipe       |

## 2. Closed and Open Circuits

- **Closed circuit** → current flows
- **Open circuit** → no current

---

## 3. Why Current is Important

Current is needed to:

- Light lamps
- Run devices
- Heat wires

---

## What is Resistance?

### 1. Meaning of Resistance

Resistance is **anything that slows down electric current**.

- High resistance → small current
- Low resistance → large current

---

## **2. Resistor**

A resistor is a component used to **control current**.

---

## **3. Unit of Resistance**

- Unit: **Ohm ( $\Omega$ )**

Examples:

- Metal wire → low resistance
- Plastic, rubber → very high resistance

---

## **Voltage, Current, and Resistance (Simple Relation)**

### **1. Voltage (Very Simple Idea)**

Voltage is the **push** that makes charges move.

- Higher voltage → stronger push
- Lower voltage → weaker push

---

### **2. Simple Relationship (Ohm's Law – Basic Form)**

Only one main formula is needed:

$$V = IR$$

Meaning:

- Voltage = push
- Current = flow
- Resistance = obstacle

---

### 3. Easy Example (No Math)

- Strong push + small obstacle → big current
- Weak push + big obstacle → small current

---

## Power and Daily Life Examples

### 1. Electrical Power (Simple Idea)

Power tells us **how fast electrical energy is used**.

- High power → more energy used
- Low power → less energy used

(Formula not required for beginners)

## 2. Heating Effect

When current flows:

- Wires become warm
- Used in heaters and irons

---

## 3. Safety Note

- Very large current can damage devices
- Fuses and resistors protect circuits

---

## 4. Summary

- Current = flow of charges
- Resistance = opposition to current
- Voltage = push
- Simple rule: more resistance  $\rightarrow$  less current