

Al- Mustaqbal University
College of Science
Medical Physics Department
First Stage

جامعة المستقبل
AL MUSTAQBAL UNIVERSITY

Practical Electrical Lab

Lecture TWO : Wheatstone Bridge

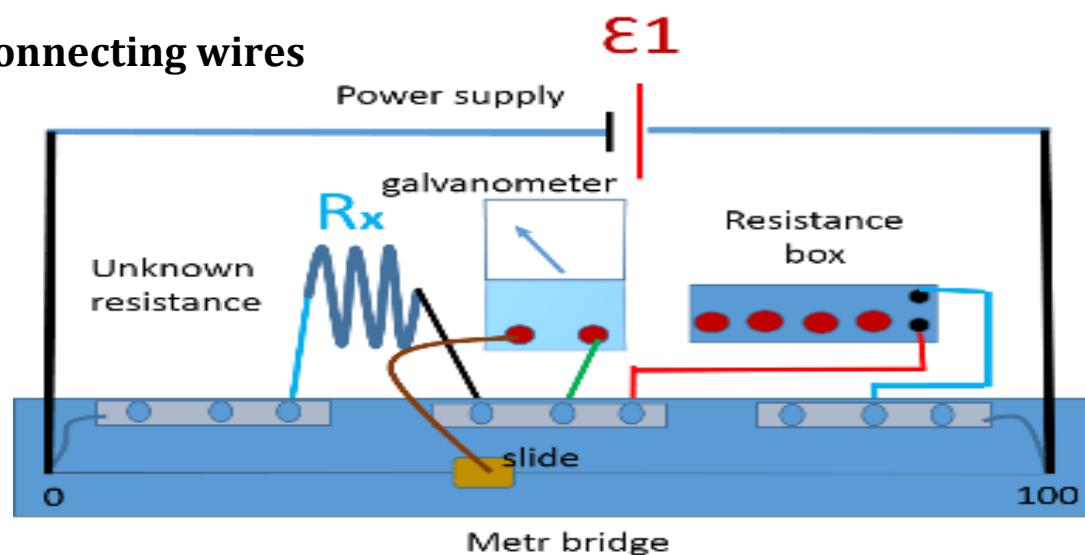
MS.c Israa hussein

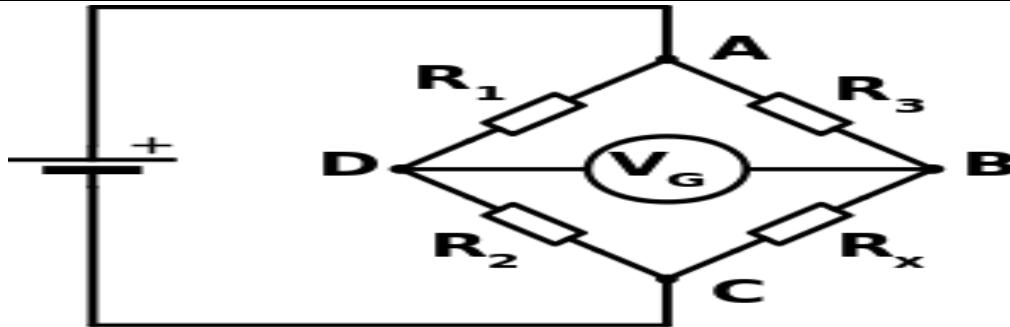
MS.c hussein ali

B.Sc Mohammed Jamal

2025 – 2026

Wheatstone Bridge


In the year 1843 AD, the English physicist Charles Wheatstone (1802 – 1875) made an electrical circuit to measure the amount of unknown resistance. This circuit was distinguished by its high accuracy in finding the amount of resistance. It relied on finding the value of the unknown resistance in proportion to the values of known resistors.


Aim of the Experiment

It is to find the amount of unknown resistance.

Tools and Equipment Used

1. Power supply
2. Unknown resistance
3. Galvanometer
4. Resistance box
5. Moving slide
6. Metric bridge (100 cm long)
7. Connecting wires

Figure (1)

Experiment theory:

The Wheatstone bridge:

- is an electrical circuit used to measure an unknown electrical resistance with high accuracy.

Q/ What principle does the Wheatstone bridge rely on?

- It relies on the principle of currents balance.

Q/ What is the importance of the galvanometer in the Wheatstone bridge experiment?

- To determine the state of equilibrium.

Q/ What is the similarity between Ohm's Law experiment and the Whetstone bridge experiment?

- Finding the value of resistance

When an electrical circuit is connected as in Figure (1) and a current passes through the circuit, the current will be divided into two parts. **I₁** passes through resistors **3R** and **R₄** and **I₂** passes through resistors **R₁** and **R₂**.

If the potential of point B is equal to the potential of point D, which is what we call the state of equilibrium, then the potential difference of two points AB is equal to the potential difference of two points AD and the potential difference of two points CB is equal to the potential difference of two points CD.

$$V_{AB} = V_{AD} \dots \dots \dots \quad (1)$$

$$V_{CB} = V_{CD} \dots \dots \dots \quad (2)$$

Therefore, we can compensate for the resistances and currents, and this is:

$$R_3 I_1 = R_2 I_2 \dots \dots \dots \quad (3)$$

$$R_x I_1 = R_1 I_2 \dots \dots \dots \quad (4)$$

By dividing the two equations, we find that:

$$R_x = R_3 * R_1 / R_2 \dots \dots \dots \quad (5)$$

If R_1 and R_2 are resistors from the same wire, their resistance is equal:

$$R_1 = \rho_1 * L_1 / A_1 \dots \dots \dots \quad (6)$$

$$R_2 = \rho_2 * L_2 / A_2 \dots \dots \dots \quad (7)$$

Since, as we mentioned, they are from the same wire, they have the same specific resistance ρ and have the same cross-sectional area A , by dividing (6) by (7)

Equation becomes as follows

$$R_x = R * L_1 / L_2 \dots \dots \dots (8)$$

$$R_1 / R_2 = R_3 / R_4$$

R	L1	L2=L- L1	R _x =R*L1/L2
50	91		
100	87		
150	84		
200	82		
250	80		

Q1/ Find The Value of The resistance $R_1= ?$ Knowing That The resistance . $R_2=20$. $R_3=15$. $R_4=60$

Q2/ Find The Value of The resistance $R_4= ?$ Knowing That The resistance . $R_1=200$. $R_2=300$. $R_3=400$