Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

R Il & -
AL MUSTAQBAL UNIVERSITY

aslall dls
S gl dakisdl @ e

Lecture (6): YARN (Yet Another Resource Negotiator)

Subject: Big Data Analysis in Healthcare

Level: Fourth

Lecturer: Asst. Lecturer Qusai AL-Durrah
Duration: Two hours

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

1. Introduction

YARN, short for Yet Another Resource Negotiator, represents the second-
generation Hadoop architecture that separates computation management from
resource management.
It was introduced in Hadoop 2.0 to overcome the scalability, fault-tolerance, and
flexibility limitations of the original MapReduce v1 system.

In MapReduce vl, a single component — the JobTracker — was responsible for
both resource allocation and job coordination. This centralized control caused
system bottlenecks and made large-scale cluster management inefficient.
YARN solves this problem by introducing a modular and distributed design where
each application manages its own execution, while a global ResourceManager
coordinates resources across the cluster.

In the context of healthcare big data, YARN enables multiple analytic workloads —
such as machine learning, streaming analysis, and patient data mining — to share
the same cluster resources efficiently and safely.

2. Learning Objectives

By the end of this lecture, students should be able to:
. Understand: the motivation behind the development of YARN.
. Identify: YARN’s main architectural components and their roles.
. Describe: the YARN execution workflow in detail.

. Compare: YARN with the original MapReduce model.

. Explain: how YARN supports multi-framework environments (MapReduce,
Spark, Tez, etc.).

. Apply: YARN concepts to healthcare data-processing scenarios.

Study Year: 2025-2026

1 L\

Al-Mustaqgbal University

@) College of Sciences
Y Intelligent Medical System Department

3. Evolution from Classic MapReduce to YARN
3.1 Limitations of MapReduce vl

The traditional Hadoop MapReduce architecture (also called MRv1) relied on two
daemons:

« JobTracker (Master)
o TaskTracker (Worker)

While effective for small clusters, this model struggled in large-scale environments
due to:

Scalability bottlenecks: The single JobTracker could not manage thousands
of concurrent tasks.

Lack of flexibility: Only MapReduce jobs could run — other processing
frameworks (e.g., graph processing or streaming) were not supported.

Resource fragmentation: Static “map” and “reduce” slots caused inefficient
utilization.

Single point of failure: If the JobTracker failed, all jobs in progress were lost.

Client

—

)

Client Job Tracker
| C—

SR

Hadoop 1.0 architecture

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

3.2 YARN’s Design Philosophy

YARN rearchitected Hadoop into a general-purpose data-processing platform
capable of running multiple application types on the same cluster.
The responsibility of Job tracker is split between the ResourceManager and
ApplicationMaster.

« Resource Management (by ResourceManager)
« Job Execution (by ApplicationMaster)

This design makes Hadoop flexible enough to support new engines such as Spark,
Hive on Tez, Flink, and Storm, all operating under YARN’s unified resource control

Other Data
MapReduce
Processing Frameworks

YARN (Resource Management)

HDFS (Distributed File System)

Hadoop 2.0

4. YARN Core Components

)
Client

—
)

Client Resource
Manager
pr——————

Hadoop Yarn architecture

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

4.1 Client

The Client is the entity that initiates and submits the application (such as a
MapReduce job) to the YARN framework. It communicates with the Resource
Manager to request execution, monitors the job status, and can also interact with the
Application Master for progress updates. It essentially acts as the user's interface to
launch and manage applications on the Hadoop cluster.

4.2 ResourceManager (RM)

It is the master daemon of YARN and is responsible for resource assignment and
management among all the applications. Whenever it receives a processing request,
it forwards it to the corresponding node manager and allocates resources for the
completion of the request accordingly. It has two major components:

o Scheduler: It performs scheduling based on the allocated application and
available resources. It is a pure scheduler; means it does not perform other
tasks such as monitoring or tracking and does not guarantee a restart if a task
fails. The YARN scheduler supports plugins such as Capacity Scheduler and
Fair Scheduler to partition the cluster resources.

Application manager: It is responsible for accepting the application and
negotiating the first container from the resource manager. It also restarts the
Application Master container if a task fails.

4.2 NodeManager (NM)

It takes care of individual node on Hadoop cluster and manages application and
workflow and that particular node. Its primary job is to keep-up with the Resource
Manager. It registers with the Resource Manager and sends heartbeats with the
health status of the node. It monitors resource usage, performs log management and
also kills a container based on directions from the resource manager. It is also
responsible for creating the container process and start it on the request of

Application master.

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

In other words; Each data node runs a NodeManager responsible for:
Managing containers (the execution units).
Monitoring resource usage (CPU, memory, disk, network).
Sending heartbeats to the ResourceManager.
Launching and cleaning up containers as instructed by ApplicationMasters.

If the RM is the “administrator,” the NMs are the “department managers” ensuring
that each ward or machine operates within resource limits.

4.3 ApplicationMaster (AM)

An application is a single job submitted to a framework. For each job, a dedicated
ApplicationMaster is launched within a container.
It:

« Negotiates resources from the RM.
« Schedules and monitors tasks across multiple NMs.
« Handles task failures and restarts if necessary.

The application master requests the container from the node manager by sending a
Container Launch Context (CLC) which includes everything an application needs to
run. Once the application is started, it sends the health report to the resource manager
from time-to-time.

After the job finishes, the AM shuts down, freeing its resources.
This decentralized control eliminates the single point of failure that existed in
MapReduce vl.

4.4 Containers

Containers are the fundamental resource units in YARN, representing allocated
bundles of CPU cores, memory, and storage on a NodeManager.
They are lightweight, isolated environments (similar to mini virtual machines) where

Page | 6 Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

individual tasks execute.
The AM decides how many containers are required and requests them dynamically
from the RM. The containers are invoked by Container Launch Context(CLC) which
1s a record that contains information such as environment variables, security tokens,
dependencies etc.

5. YARN Execution Workflow
Step-by-Step Flow:

1. Job Submission:
The client submits an application (e.g., MapReduce) to the ResourceManager.

. ApplicationMaster Launch:
RM allocates the first container on an available NodeManager and launches
the AM within it.

. the Application Manager registers itself with the Resource Manager

. Resource Negotiation:
The AM requests additional containers from the RM according to job
requirements.

. Node Manager notification:
The Application Manager notifies the Node Manager to launch containers.

. Task Execution:
NodeManagers start containers and execute assigned tasks.

. Progress Monitoring:
Client contacts Resource Manager/Application Manager to monitor
application’s status. The AM monitors each task, manages retries, and
reports progress back to the client via RM.

. Job Completion:
After all tasks finish, the AM notifies the RM and terminates. RM then
releases all containers.

Page |7 Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

Application
Manager

Resource

Flant Manager

Node
Manager

6. Scheduling in YARN

YARN supports several scheduling policies to manage how resources are distributed

among users or departments:

Scheduler

Type Description Use Case

FIFO First-come, first-served; simple but

11 \ i
Scheduler nfair. Small test clusters

Capacity Divides resources into queues with|Multi-tenant institutions like
Scheduler minimum guaranteed capacities. ||hospitals or universities.

Fair Allocates unused resources evenly|Dynamic environments with
Scheduler among active jobs. mixed workloads.

Schedulers ensure fairness and priority control — e.g., assigning higher capacity to
time-critical medical analytics while keeping research jobs running at lower priority.

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

7. YARN Cluster Example

Component Example in Healthcare Cluster

Allocates containers for different research departments

ResourceManager . .
(e.g., genomics, imaging)

NodeManager Runs on each compute node in the hospital data center

ApplicationMaster| Manages a specific job (e.g., MRI image classification)

Execute task units (e.g., individual patient image

Containers i
analysis)

8. YARN vs. Classic MapReduce

Feature MapReduce vl YARN (MRv2)

Job Management ||Single JobTracker Per-job ApplicationMaster

Resource Control |Static slots Dynamic containers

Fault Tolerance Limited Improved, distributed

Framework Support|MapReduce only Multiple (Spark, Tez, Flink, etc.)

Scalability Limited to ~4000 nodes|Scales to 10,000+ nodes

9. YARN Advantages & Disadvantages
9.1 Advantages

« Flexibility: YARN offers flexibility to run various types of distributed
processing systems such as Apache Spark, Apache Flink, Apache Storm, and

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

others. It allows multiple processing engines to run simultaneously on a single
Hadoop cluster.

Resource Management: YARN provides an efficient way of managing
resources in the Hadoop cluster. It allows administrators to allocate and
monitor the resources required by each application in a cluster, such as CPU,
memory, and disk space.

Scalability: YARN 1is designed to be highly scalable and can handle
thousands of nodes in a cluster. It can scale up or down based on the
requirements of the applications running on the cluster.

Improved Performance: YARN offers better performance by providing a
centralized resource management system. It ensures that the resources are
optimally utilized, and applications are efficiently scheduled on the available
resources.

Security: YARN provides robust security features such as Kerberos
authentication, Secure Shell (SSH) access, and secure data transmission. It
ensures that the data stored and processed on the Hadoop cluster is secure.

9.2 Disadvantages

Complexity: YARN adds complexity to the Hadoop ecosystem. It requires
additional configurations and settings, which can be difficult for users who
are not familiar with YARN.

Overhead: YARN introduces additional overhead, which can slow down the
performance of the Hadoop cluster. This overhead is required for managing

resources and scheduling applications.

Latency: YARN introduces additional latency in the Hadoop ecosystem. This
latency can be caused by resource allocation, application scheduling, and
communication between components.

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

Single Point of Failure: YARN can be a single point of failure in the Hadoop
cluster. [f YARN fails, it can cause the entire cluster to go down. To avoid this,
administrators need to set up a backup YARN instance for high availability.

Limited Support: YARN has limited support for non-Java programming
languages. Although it supports multiple processing engines, some engines
have limited language support, which can limit the usability of YARN in
certain environments.

10. YARN Advantages & Disadvantages

YARN redefines Hadoop as a multi-application resource manager rather than just
a MapReduce system. By separating resource negotiation and job management, it

enables efficient resource sharing, flexible workload management, and high
scalability — all of which are essential for healthcare big data systems that integrate

batch, streaming, and Al-driven analytics.

Study Year: 2025-2026

