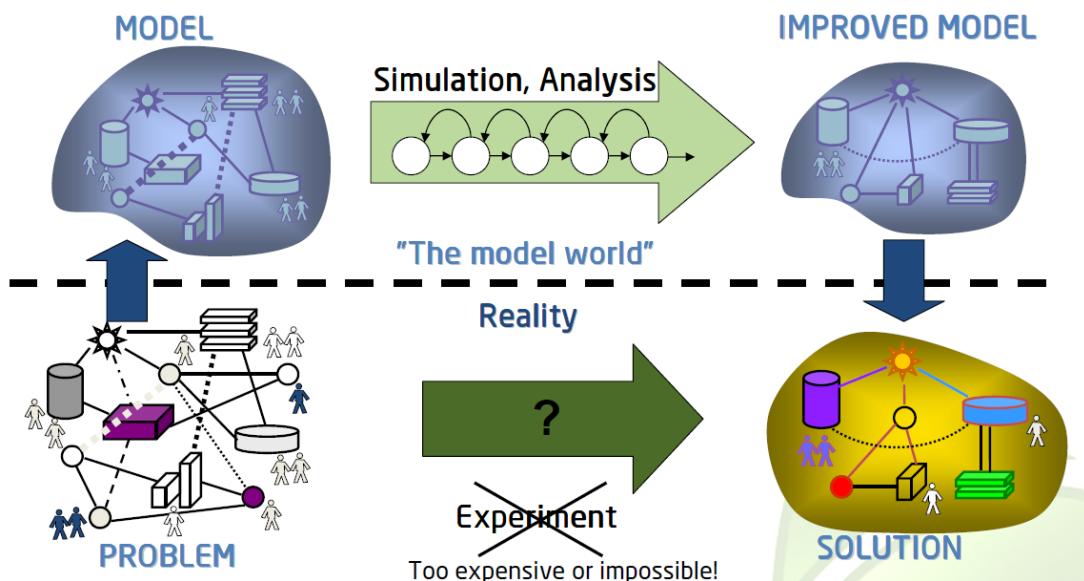


جامعة المستقبل
AL MUSTAQBAL UNIVERSITY

كلية العلوم
قسم الأنظمة الطبية الذكية

المحاضرة الأولى


المادة: **Simulation and Modeling**
المرحلة: **الرابعة**
اسم الاستاذ: **م.م هادي صلاح هادي**

What is Simulation and Modeling?

Modeling: The mathematical formulation or conceptual framework used to simulate real systems.

Simulation: Creating a virtual representation of real-world processes.

Why is Simulation Important in Medicine

- Reduces risk to patients.
- Allows for safe testing of new procedures.
- Helps in training medical professionals.
- Reduces cost and time in clinical trials

The future of healthcare education bridges the gap between theory and practice.

The future of healthcare education bridges the gap between theory and practice.

Source:
<https://www.eaglegatecollege.edu/blog/how-nursing-simulation-labs-are-transforming-healthcare-education/>

Key Application Area

- Drug Discovery
- Diagnostic Imaging
- Surgery Planning
- Patient-Specific Treatment
- Outcome Prediction

Types of Medical Simulations

- 1. Discrete Event Simulation (DES)**
- 2. Agent-Based Modeling (ABM)**
- 3. System Dynamics (SD)**
- 4. Monte Carlo Simulation (MCS)**

1. Discrete Event Simulation (DES)

This type of simulation models processes step by step. Each event happens at a specific time .

For example, patients entering the emergency room one by one each patient is treated as a separate "event."

Example: Simulating a waiting line in the ER (Emergency Room).

2. Agent-Based Modeling (ABM)

In this simulation:

Each person (like a patient, doctor, or nurse) is an independent agent.

Each agent has its own behavior and rules for interacting with others.

The simulation shows how agents act and react in a given environment.

Why use it?

It helps us understand how the behavior of a whole system changes based on how individuals behave.

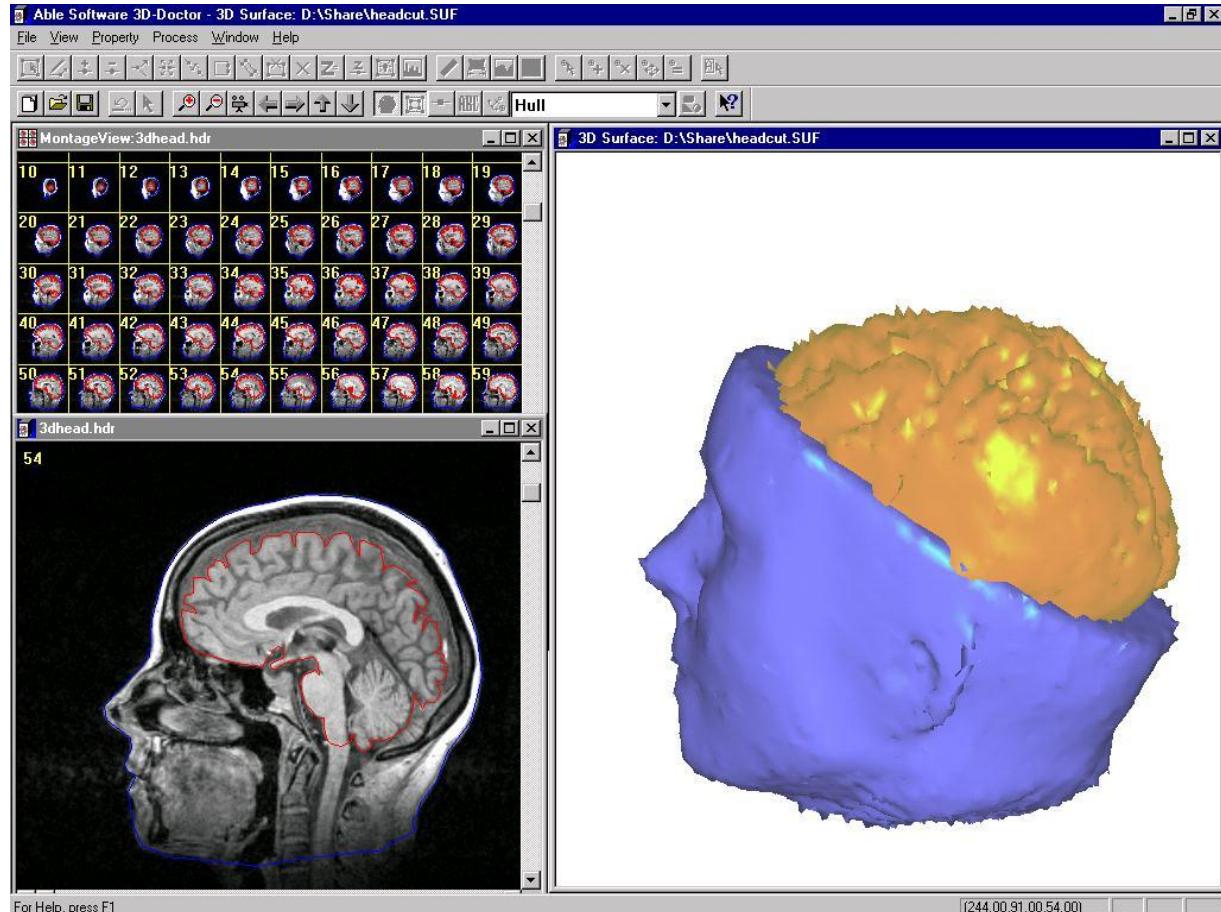
Example (Simulating the spread of a virus (like COVID-19)):

Each person is an "agent". If they get close to someone infected, they might catch the virus depending on conditions (like distance or wearing a mask). The simulation shows how the virus spreads over time.

3. System Dynamics (SD)

This uses mathematical models to study how systems change over time. It focuses on feedback loops and delays. It is useful for modeling chronic diseases.

Example: Tracking how a diabetic patient's blood sugar level changes throughout the year.


4. Monte Carlo Simulation (MCS)

This method runs the same scenario thousands of times using random values. It is helpful when there is uncertainty or many possible outcomes.

Example: Predicting the success rate of a surgery by simulating thousands of possible results.

Real-World Case Study

- In some complex surgical operations, doctors use:
- 3D modeling of the body or the affected organ, using medical imaging techniques like CT scans or MRI.
- Then, an intelligent system analyzes these 3D models using tools from:
- Machine Learning (ML): to detect patterns and predict possible outcomes.
- Deep Learning (DL): to recognize and analyze medical images (e.g., identifying a tumor in a CT scan).
- Data Mining: to extract useful information from patient records and medical history.

Component Role in the Model

ML / DL	Detect tissue boundaries, classify tumors, predict outcomes
Modeling	Build a 3D model from medical scan images
Simulation	Run different scenarios on the model without touching the patient

Challenges in Medical Simulation:

- Data accuracy and availability
- High computational cost
- Ethical issues in patient modeling

Future of Medical Simulation:

- Integration with AI and Machine Learning
- Personalized medicine
- Virtual Reality (VR) and Augmented Reality (AR)

VR-based medical simulation:

Surgeons can interact with patient-specific 3D models to plan complex operations using virtual reality and AI.

References

- [1] Banks, J., et al. (2010). Discrete-Event System Simulation.
- [2] Marshall, D. A., et al. (2005). Applying simulation modeling to healthcare: review and recommendations.
- [3] <https://www.sciencedirect.com/topics/medicine-and-dentistry/medical-simulation>