

جامعة المستقبل
AL MUSTAQBAL UNIVERSITY

كلية العلوم
قسم الأنظمة الطبية الذكية

المحاضرة السابعة

المادة: **Simulation and Modeling**
المرحلة: **الرابعة**
اسم الاستاذ: **م.م هادي صلاح هادي**

Discrete Event Simulation (DES)

What is Simulation?

- Process of imitating real systems to study behavior
 - Allows 'what-if' experiments without harming real systems
 - Useful when experiments are costly, dangerous, or slow

Why Discrete Event Simulation?

- Models systems where changes happen at discrete times (events)
 - Intuitive mapping to real-world processes (arrivals, services)
 - Requires less math than continuous models ideal for beginners

DES Components

- Entities (e.g., patients, customers)
 - Resources (servers: doctors, machines)
 - Events (arrival, service start, departure)
 - Queues and disciplines (FIFO typical)

Event List & Time Advance

- Maintain a list of future events sorted by time
 - Advance simulation time to the next event
 - Update system state and generate new events if needed

Discrete Event Simulation (DES) for Smarter Manufacturing

- DES provides the ability to model every step of the production flow, from individual machine actions to the overall factory layout. By leveraging this technology, manufacturers can:
- Identify bottlenecks: Locate problem areas in your production process before they cause delays.
- Test improvements: Virtually implement process changes to understand their impact on production speed, quality, and efficiency.
- Reduce downtime: Plan for maintenance and disruptions by modeling different what-if scenarios, ensuring minimal impact on production.
- Improve resource allocation: Optimize the use of materials, machines, and labor to achieve better outcomes with fewer resources.

Example System: Single-server Queue (M/M/1 style)

- Entities arrive according to a Poisson process (rate λ)
 - Service times are exponential with rate μ
 - Single server, FIFO queue

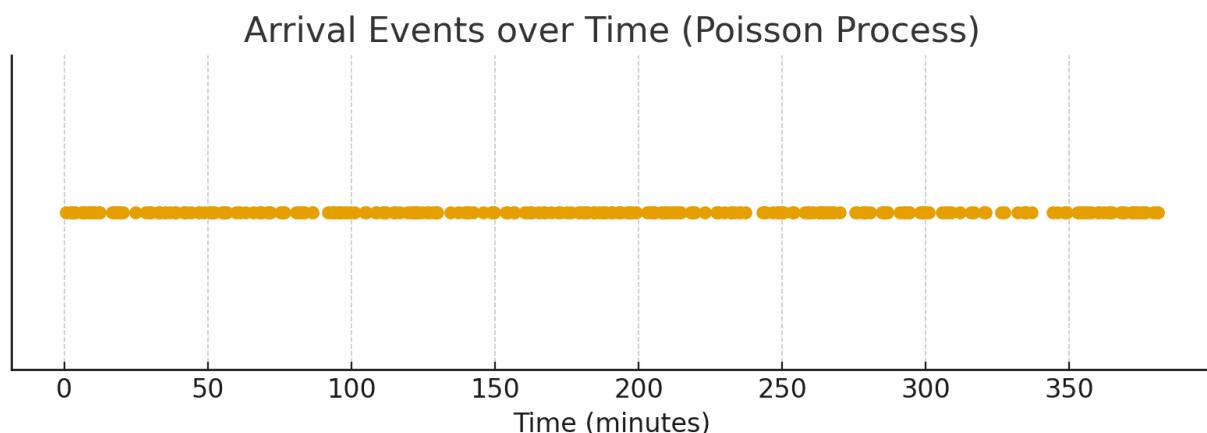
M/M/1 Queue — Key Formulas

- Utilization: $\rho = \frac{\lambda}{\mu}$
 - Average number in system: $L = \frac{\rho}{(1 - \rho)}$ (when $\rho < 1$)
 - Average time in system: $W = \frac{1}{(\mu - \lambda)}$
 - Little's Law: $L = \lambda \times W$

Numeric Example:

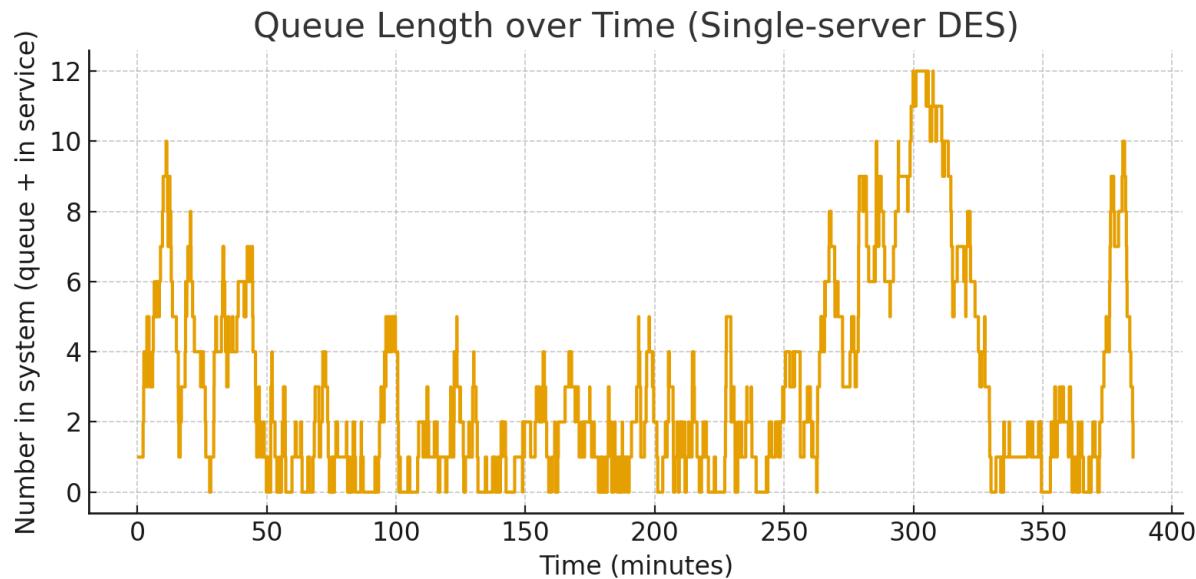
- Let $\lambda = 0.8$ arrivals/min, $\mu = 1.0$ services/min
 - Compute: $\rho = 0.8 / 1.0 = 0.8$
 - $L = \frac{0.8}{(1 - 0.8)} = \frac{0.8}{0.2} = 4$ (customers on average)
 - $W = \frac{1}{(1 - 0.8)} = \frac{1}{0.2} = 5$ minutes; check: $L = \lambda W = 0.8 \times 5 = 4$

Assumptions & Limitations of M/M/1

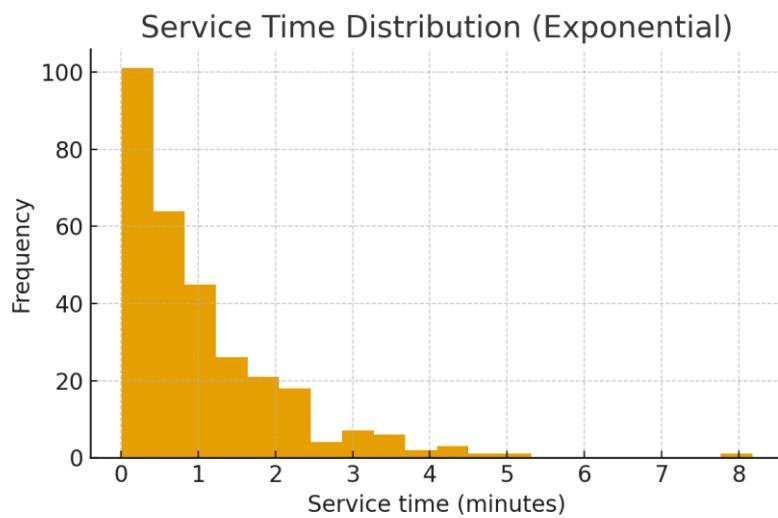

- Arrivals Poisson, services exponential memoryless
 - Single server, infinite queue; assumptions may not hold in hospitals
 - DES can relax many assumptions by simulating exact rules

DES Pseudocode

- Initialize event list with first arrival
- While events exist and not finished:
 - Pop next event, advance clock to event time
 - If arrival: schedule service or enqueue
 - If departure: free server and start next (if any)
 - Record metrics (wait times, utilization, throughput)


Arrival Events over Time

Each dot is an arrival. Interarrival times are exponential → Poisson arrivals.



Queue Length over Time

Step-plot shows how many entities are in the system (queue + in service) at each event time.

Service Time Distribution

Exponential service times (many short services and few long ones).

Performance Metrics to Measure

- Average waiting time in queue (W_q)
 - Average time in system (W)
 - Average number in queue (L_q) and system (L)
 - Server utilization (ρ) and throughput

Validation & Verification

- Compare to analytical results when available (e.g., M/M/1)
 - Check Little's Law: $L \approx \lambda \times W$
 - Run multiple replications to estimate variance and confidence intervals

Medical Application — ER Triage (DES use)

- Model patient arrivals and triage categories (critical, urgent, non-urgent)
 - Assign priorities and resources (doctors, beds)
 - Measure waiting times by severity and identify bottlenecks
 - ER → Emergency Room

Medical Application — OR Scheduling & ICU

- Simulate OR schedules, cleaning times, and emergency insertions
 - Model ICU bed occupancy and patient flow from ER → ICU → Ward
 - Evaluate staffing needs and resource allocation
 - OR → Operating Room
 - ICU → Intensive Care Unit