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Backpropagation Network

- In 1969 a method for learning in multi-layer network,

  Backpropagation, was invented by Bryson and Ho.

- The Backpropagation algorithm is a sensible approach

  for dividing the contribution of each weight.

- Works basically the same as perceptron



Backpropagation Learning Principles: 

Hidden Layers and Gradients

There are two differences for the updating rule :

1) The activation of the hidden unit is used instead of 

activation of the   input value.

2) The rule contains a term for the gradient of the activation 

    function.



Backpropagation Network 

training

• 1. Initialize network with random weights

• 2. For all training cases (called examples):

– a. Present training inputs to network and 
calculate output

– b. For all layers (starting with output layer, 
back to input layer):

• i. Compare network output with correct output

       (error function)

• ii. Adapt weights in current layer
This is 

what 

you 

want



Backpropagation Learning 

Details

• Method for learning weights in feed-forward (FF) 
nets

• Can’t use Perceptron Learning Rule
– no teacher values are possible for hidden units

• Use gradient descent to minimize the error
– propagate deltas to adjust for errors 

    backward from outputs 

      to hidden layers

         to inputs
forward

backward



Backpropagation Algorithm – Main 

Idea – error in hidden layers

The ideas of the algorithm can be summarized as follows :

1. Computes the error term for the output units using the

  observed error.

2. From output layer, repeat 

- propagating the error term back to the previous layer 

and 

- updating the weights between the two layers 

until the earliest hidden layer is reached.



Backpropagation Algorithm

• Initialize weights (typically random!)

• Keep doing epochs

– For each example e in training set do

• forward pass to compute

– O = neural-net-output(network,e)

– miss = (D-O) at each output unit 

• backward pass to calculate deltas to weights

• update all weights

– end

• until tuning set error stops improving

Backward pass explained in next slideForward pass explained 

earlier



Backward Pass

• Compute deltas to weights 

– from hidden layer 

– to output layer

• Without changing any weights (yet), 

compute the actual contributions 

– within the hidden layer(s)

–  and compute deltas





Gradient Descent

• Think of the N weights as a point in an N-

dimensional space

• Add a dimension for the observed error

• Try to minimize your position on the “error 

surface”



Error Surface

Error as function of 

weights in 

multidimensional space

error

weights



Gradient

• Trying to make error decrease the fastest

• Compute:
• GradE = [dE/dw1, dE/dw2, . . ., dE/dwn]

• Change i-th weight by
• deltawi = -alpha * dE/dwi

• We need a derivative!  

• Activation function must be continuous, 
differentiable, non-decreasing, and easy to 
compute

Derivatives of error for weights

Compute 

deltas



Can’t use LTU

• To effectively assign credit / blame to units 

in hidden layers, we want to look at the 

first derivative of the activation function

• Sigmoid function is easy to differentiate 

and easy to compute forward

Linear Threshold Units Sigmoid function



Updating hidden-to-output

• We have teacher supplied desired values

• deltawji =  * aj * (Di - Oi) * g’(ini)

=  * aj * (Di - Oi) * Oi * (1 - Oi)

– for sigmoid the derivative is,  g’(x) = g(x) * (1 - g(x))

alpha

derivative

miss

Here we have 

general formula with 

derivative, next we 

use for sigmoid



Updating interior weights

• Layer k units provide values to all layer 

k+1 units

• “miss” is sum of misses from all units on k+1

•  missj =  [ ai(1- ai) (Di - ai) wji ]

• weights coming into this unit are adjusted 

based on their contribution

deltakj =  * Ik * aj * (1 - aj) * missj For layer k+1

Compute deltas



How do we pick ?

1. Tuning set, or

2. Cross validation, or

3. Small for slow, conservative learning



How many hidden layers?

• Usually just one (i.e., a 2-layer net)

• How many hidden units in the layer?

– Too few ==> can’t learn

– Too many ==> poor generalization



How big a training set?

• Determine your target error rate, e

• Success rate is 1- e

• Typical training set approx. n/e, where n is the 

number of weights in the net

• Example:

– e = 0.1, n = 80 weights

– training set size 800 

     trained until 95% correct training set classification 

       should produce 90% correct classification 

          on testing set (typical)



Learning Algorithm:
Backpropagation

To teach the neural network we need training data set. The training data set consists of 
input signals (x1 and x2 ) assigned with corresponding target (desired output) z. 

The network training is an iterative process. In each iteration weights coefficients of nodes 
are modified using new data from training data set. Modification is calculated using 
algorithm described below: 

Each teaching step starts with forcing both input signals from training set. After this stage 
we can determine output signals values for each neuron in each network layer. 



Learning Algorithm:
Backpropagation

Pictures below illustrate how signal is propagating through the network, 
Symbols w(xm)n represent weights of connections between network input xm and 
neuron n in input layer. Symbols yn represents output signal of neuron n.



Learning Algorithm:
Backpropagation



Learning Algorithm:
Backpropagation



Learning Algorithm:
Backpropagation

Propagation of signals through the hidden layer. Symbols wmn represent weights 
of connections between output of neuron m and input of neuron n in the next 
layer.



Learning Algorithm:
Backpropagation



Learning Algorithm:
Backpropagation



Learning Algorithm:
Backpropagation

Propagation of signals through the output layer.



Learning Algorithm:
Backpropagation

In the next algorithm step the output signal of the network y is 
compared with the desired output value (the target), which is found in 
training data set. The difference is called error signal d of output layer 
neuron



Learning Algorithm:
Backpropagation

The idea is to propagate error signal d (computed in single teaching step) 
back to all neurons, which output signals were input for discussed 
neuron.



Learning Algorithm:
Backpropagation

The idea is to propagate error signal d (computed in single teaching step) 
back to all neurons, which output signals were input for discussed 
neuron.



Learning Algorithm:
Backpropagation

The weights' coefficients wmn used to propagate errors back are equal to 
this used during computing output value. Only the direction of data flow 
is changed (signals are propagated from output to inputs one after the 
other). This technique is used for all network layers. If propagated errors 
came from few neurons they are added. The illustration is below:



Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights 
coefficients of each neuron input node may be modified. In formulas 
below df(e)/de represents derivative of neuron activation function 
(which weights are modified).



Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights 
coefficients of each neuron input node may be modified. In formulas 
below df(e)/de represents derivative of neuron activation function 
(which weights are modified).



Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights 
coefficients of each neuron input node may be modified. In formulas 
below df(e)/de represents derivative of neuron activation function 
(which weights are modified).



Back-propagation problems

1. Design problem
• There are no formal method for choosing the proper design 

for the network.

•  We mean by the design problem is specifying the number of 
hidden layers and the number of neurons in each layer.

• There are many method for doing this , one of them are is  
trial and error .



2. Convergence

• The main problem of the back-propagation is 
reaching the convergence.

• The correct value of the learning rate have a 
very high influence in convergence. 



3. Generalization

• We mean by generalization is the network capability for 
recognizing new pattern that are not used in the training 
process.

• The “Overfitting” problem is the problem of increasing 
number of the network weight that compared with the 
number of the training pattern and that make the network 
memorize the training pattern. That will increase the learning 
performance and decrease the generalization performance.

• Many algorithms that are suggested in order to reduce the 
number of weight in the network.



4. Premature Saturation 

• If the value of the initial weight is very high then the 
weight is growing very fast and the gradient is near 
zero and therefore there are no update in the weight 
and the error value  is still high then the neuron is 
saturated.

• To solve that problem we can use some algorithms 
,like genetic algorithm, to suggest the initial weights.



Thank you…

Any questions??
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