Deep Learning
Lecture-7&8

Asst. Lect. Ali Al-khawaja

2025-2026 L
\ Class Room /

Backpropagation Network

- In 1969 a method for learning in multi-layer network,
Backpropagation, was invented by Bryson and Ho.

- The Backpropagation algorithm is a sensible approach
for dividing the contribution of each weight.

- Works basically the same as perceptron

Backpropagation Learning Principles:
Hidden Layers and Gradients

There are two differences for the updating rule :

1) The activation of the hidden unit is used instead of
activation of the _input value.

2) The rule contains a term for the gradient of the activation
function.

Backpropagation Network
training

* 1. Initialize network with random weights

« 2. For all training cases (called examples):

— a. Present training inputs to network and
calculate output

— b. For all layers (starting with output layer,
back to input layer):
* i. Compare network output with correct output

(error function) —
* il. Adapt weights in current layer mastls

you
want

Backpropagation Learning

Details

« Method for learning weights in feed-forward (FF)

nets

« Can't use Perceptron Learning Rule
— no teacher values are possible for hidden units

« Use gradient descent to minimize the error
— propagate deltas to adjust for errors
backward from outputs

to hidden layers
to inputs

_

forward

.

backward

Backpropagation Algorithm — Main
ldea — error in hidden layers

The ideas of the algorithm can be summarized as follows :

1. Computes the error term for the output units using the
observed error.

2. From output layer, repeat
- propagating the error term back to the previous layer
and
- updating the weights between the two layers
until the earliest hidden layer is reached.

Backpropagation Algorithm

* |nitialize weights (typically random!)
« Keep doing epochs
— For each example e in training set do

» forward pass to compute
— O = neural-net-output(network,e)
— miss = (D-0) at each output unit

- backward pass to calculate deltas to weights
e update all weights

—end
until tuning set error stops improving

/

Forward pass explained Backward pass explained in next slide

earlier

Backward Pass

« Compute deltas to weights
— from hidden layer
— to output layer

« Without changing any weights (yet),
compute the actual contributions
— within the hidden layer(s)
— and compute deltas

|

<“— > <“— - :
Linear Block Neurons Linear Block Neurons

hk= f (netk)

4\ AWkJ: 1].5j.hk
f'(net;)

AVi= 1.8 si

f'(nety)

Y
==

1 L Wy . 9; 8J':[(dj_oj)-f (net;)] dj - 0] ﬂ d;

Back-Propagation phase

Gradient Descent

* Think of the N weights as a point in an N-
dimensional space

 Add a dimension for the observed error

* Try to minimize your position on the “error
surface”

Error Surface

error

weights

wl
Error as function of
weights in
multidimensional space

Cormpiz Gradient

deltas

Trying to make error decrease the fastest
» Compute:
~ * Gradg = [dE/dw1, dE/dwW2, . . ., dE/dwn]
. Change i-th weight by
 delta, = -alpha ™ dE/dwi

Derivatives of error for weights

We need a derivative!

Activation function must be continuous,
differentiable, non-decreasing, and easy to
compute

Can'tuse LTU

* To effectively assign credit / blame to units
In hidden layers, we want to look at the
first derivative of the activation function

« Sigmoid function is easy to differentiate
and easy to compute forward

Linear M@d Units » | Sigmoid function

Updating hidden-to-output

We have teacher supplied desired values

——

. deltawji =" 3| *(D,-0i)* g’(ln,)
- *a,*(D;-0)*0;*(1-0)

— for sigmoid the derivative is, ’(X) — g(x) * (1-g(x))

derivative

" alpha Here we have
general formula with
derivative, next we
use for sigmoid

miss

Updating interior weights

« Layer k units provide values to all layer
K+1 units
* ‘'miss’ is sum of misses from all units on k+1
» miss; =2 [a(1- &) (D;- &) w;]
* weights coming into this unit are adjusted
based on their contribution

deJtakj =a* " a " (1-a) " miss T ——

Compute deltas

How do we pick a”?

1. Tuning set, or
2. Cross validation, or

3. Small for slow, conservative learning

How many hidden layers?

» Usually just one (i.e., a 2-layer net)

 How many hidden units in the layer?
— Too few ==> can’t learn
— Too many ==> poor generalization

How big a training set?

Determine your target error rate, e
Success rate is 1- e

Typical training set approx. n/e, where n is the
number of weights in the net

Example:
— e=0.1, n = 80 weights
— training set size 800
trained until 95% correct training set classification
should produce 90% correct classification
on testing set (typical)

Learning Algorithm:
Backpropagation

To teach the neural network we need training data set. The training data set consists of
input signals (x; and x,) assigned with corresponding target (desired output) z.

The network training is an iterative process. In each iteration weights coefficients of nodes
are modified using new data from training data set. Modification is calculated using
algorithm described below:

Each teaching step starts with forcing both input signals from training set. After this stage
we can determine output signals values for each neuron in each network layer.

Learning Algorithm:
Backpropagation

Pictures below illustrate how signal is propagating through the network,
Symbols w,,,. . represent weights of connections between network input x,, and
neuron nin input layer. Symbols y, represents output signal of neuron n.

W= fl(“'m)ﬁl +“'(:.:2}1~T2)

Learning Algorithm:
Backpropagation

Learning Algorithm:
Backpropagation

Learning Algorithm:
Backpropagation

Propagation of signals through the hidden layer. Symbols w,, represent weights
of connections between output of neuron mand input of neuron nin the next
layer.

Vo= J4O0gyy 05y ¥y + 03 35)

Learning Algorithm:
Backpropagation

Learning Algorithm:
Backpropagation

Learning Algorithm:
Backpropagation

Propagation of signals through the output layer.

Learning Algorithm:
Backpropagation

In the next algorithm step the output signal of the network yis
compared with the desired output value (the target), which is found in
training data set. The difference is called error signal d of output layer

neuron

Learning Algorithm:
Backpropagation

The idea is to propagate error signal d (computed in single teaching step)
back to all neurons, which output signals were input for discussed
neuron.

Learning Algorithm:
Backpropagation

The idea is to propagate error signal d (computed in single teaching step)
back to all neurons, which output signals were input for discussed
neuron.

Learning Algorithm:
Backpropagation

The weights' coefficients w, used to propagate errors back are equal to
this used during computing output value. Only the direction of data flow
is changed (signals are propagated from output to inputs one after the
other). This technique is used for all network layers. If propagated errors
came from few neurons they are added. The illustration is below:

Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas

below dffe)/de represents derivative of neuron activation function
(which weights are modified).

df,(e)

Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas

below dffe)/de represents derivative of neuron activation function
(which weights are modified).

_ df,(e)

u«"(xm = Weeyy T 70,

X,
de

df, (e)

de

uf"(ﬂﬂ = Wz T no, X,

Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas

below dffe)/de represents derivative of neuron activation function
(which weights are modified).

df.(e)
1r PR 5 o ﬁ - 5
df.(e)
1r [—] . ﬁ - L]

Back-propagation problems

1. Design problem

* There are no formal method for choosing the proper design
for the network.

 We mean by the design problem is specifying the number of
hidden layers and the number of neurons in each layer.

* There are many method for doing this , one of them are is
trial and error.

2. Convergence

 The main problem of the back-propagation is
reaching the convergence.

* The correct value of the learning rate have a
very high influence in convergence.

3. Generalization

* We mean by generalization is the network capability for
recognizing new pattern that are not used in the training
process.

* The “Overfitting” problem is the problem of increasing
number of the network weight that compared with the
number of the training pattern and that make the network
memorize the training pattern. That will increase the learning
performance and decrease the generalization performance.

* Many algorithms that are suggested in order to reduce the
number of weight in the network.

4. Premature Saturation

* If the value of the initial weight is very high then the
weight is growing very fast and the gradient is near
zero and therefore there are no update in the weight
and the error value is still high then the neuron is

saturated.

* To solve that problem we can use some algorithms
,like genetic algorithm, to suggest the initial weights.

Thank you...

Any questions??

o

Q 3500 4ieil QR Code drymdl Laiu¥) 3o pase a2
QM daga eSSLL;y\A :&J.CAIAAS\ JP :\.x;\)j\ Lﬁﬂ\
sl) jemlaal

My google site

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Backpropagation Network training
	Slide 5: Backpropagation Learning Details
	Slide 6
	Slide 7: Backpropagation Algorithm
	Slide 8: Backward Pass
	Slide 9
	Slide 10: Gradient Descent
	Slide 11: Error Surface
	Slide 12: Gradient
	Slide 13: Can’t use LTU
	Slide 14: Updating hidden-to-output
	Slide 15: Updating interior weights
	Slide 16: How do we pick ?
	Slide 17: How many hidden layers?
	Slide 18: How big a training set?
	Slide 19: Learning Algorithm: Backpropagation
	Slide 20: Learning Algorithm: Backpropagation
	Slide 21: Learning Algorithm: Backpropagation
	Slide 22: Learning Algorithm: Backpropagation
	Slide 23: Learning Algorithm: Backpropagation
	Slide 24: Learning Algorithm: Backpropagation
	Slide 25: Learning Algorithm: Backpropagation
	Slide 26: Learning Algorithm: Backpropagation
	Slide 27: Learning Algorithm: Backpropagation
	Slide 28: Learning Algorithm: Backpropagation
	Slide 29: Learning Algorithm: Backpropagation
	Slide 30: Learning Algorithm: Backpropagation
	Slide 31: Learning Algorithm: Backpropagation
	Slide 32: Learning Algorithm: Backpropagation
	Slide 33: Learning Algorithm: Backpropagation
	Slide 34: Back-propagation problems
	Slide 35
	Slide 36
	Slide 37
	Slide 38

