

جامعة المستقبل
AL MUSTAQL UNIVERSITY

كلية العلوم قسم الانظمة الطبية الذكية

Lecture: (6)

Classification: Decision Trees & Bayesian Classification Subject:

Clinical Data Mining

Level: Four

Lecturer: Dr. Maytham Nabeel Meqdad

Classification: Decision Trees & Bayesian Classification

Classification is a supervised learning technique used to build models that can predict the class label of new data based on previously labeled training data. Two of the most widely used classification methods are **Decision Trees** and **Bayesian Classification**.

1. Decision Trees

A **Decision Tree** is a tree-like predictive model used to classify data by recursively splitting it based on the most informative attributes.

How Decision Trees Work

- Each **internal node** represents a test on an attribute.
- Each **branch** represents the outcome of that test.
- Each **leaf node** represents a class label.
- The goal is to partition the dataset into smaller, purer subsets.

Attribute Selection Measures

To choose the best attribute for splitting, different metrics are used:

- **Entropy** – measures disorder or impurity in the dataset.
- **Information Gain** – the reduction in entropy after a split.
- **Gain Ratio** – adjusts information gain to reduce bias.
- **Gini Index** – used in CART to measure node purity.

Common Algorithms

- **ID3** – uses Information Gain.
- **C4.5** – uses Gain Ratio and handles continuous attributes.
- **CART** – uses the Gini Index and produces binary trees.

Advantages

- Easy to understand and interpret.
- Can handle both numerical and categorical data.
- Requires little data preparation.

Disadvantages

- Prone to overfitting.
- Sensitive to noisy data.
- Choosing the optimal tree size can be difficult

. Bayesian Classification

Bayesian Classification is based on **Bayes' Theorem**, which calculates the probability of a class given a set of features.

Bayes' Theorem

$$P(C|X) = P(X|C) \cdot P(C) / P(X) \quad P(C|X) = P(X|C) \cdot P(C) / \sum_i P(X|C_i) \cdot P(C_i)$$

Where:

- **P(C|X)**: Posterior probability of class *C* given data *X*
- **P(X|C)**: Likelihood of data *X* within class *C*
- **P(C)**: Prior probability of class *C*
- **P(X)**: Probability of the data

Naïve Bayes Classifier

The most common Bayesian method.

It assumes **feature independence**, which simplifies probability calculations but still produces strong performance in many applications, especially text classification.

Steps in Naïve Bayes

1. Calculate prior probabilities for each class.
2. Compute likelihoods for each feature value given each class.
3. Apply Bayes' theorem to obtain posterior probabilities.
4. Assign the class with the highest posterior probability.

Advantages

- Very fast and efficient.
- Performs well with large datasets.
- Excellent performance in text classification and spam filtering.

Disadvantages

- Assumes independence between features, which is often unrealistic.
- Sensitive to zero-frequency problems without smoothing.

3. Comparison

Feature	Decision Trees	Bayesian Classifier
Speed	Fast	Very fast
Interpretability	Highly interpretable	Less interpretable
Handling noise	More sensitive	More robust
Text classification	Moderate	Excellent
Risk of overfitting	High	Low

- Decision Trees and Bayesian Classification are two fundamental techniques in data mining. Decision Trees are ideal when interpretability is important, while Bayesian methods—especially Naïve Bayes—are highly efficient and perform exceptionally well with large or text-based datasets. Both methods provide powerful tools for building accurate and reliable classification models

EBook: Data Mining: Concepts and Techniques, Second Edition" Jiawei Han and Micheline Kamber"

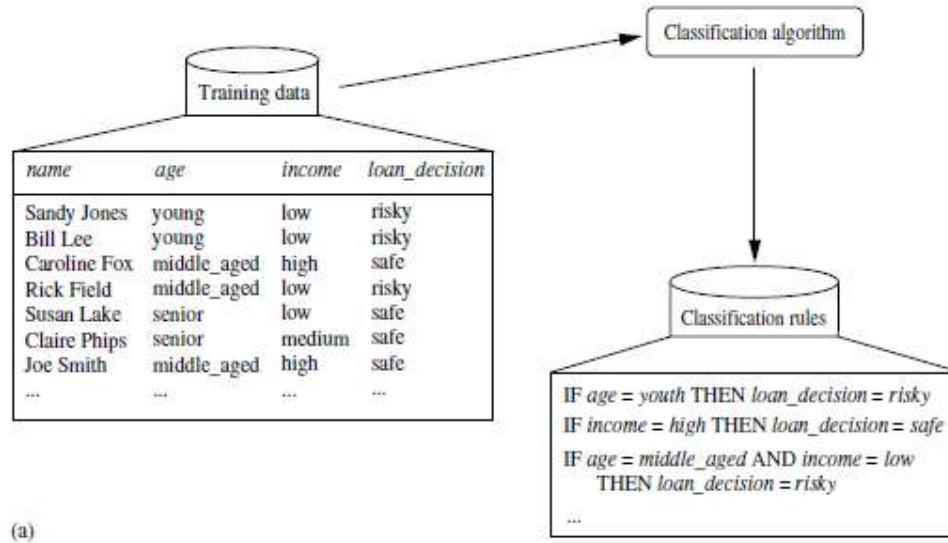
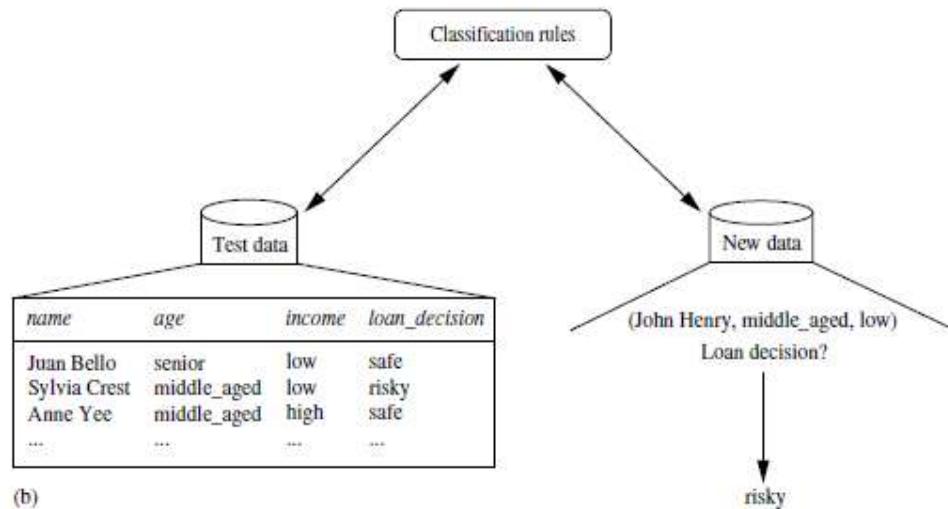


Figure 6.1 The data classification process: (a) *Learning*: Training data are analyzed by a classification algorithm. Here, the class label attribute is *loan_decision*, and the learned model or classifier is represented in the form of classification rules. (b) *Classification*: Test data are used to estimate the accuracy of the classification rules. If the accuracy is considered acceptable, the rules can be applied to the classification of new data tuples.

Table 6.1 Class-labeled training tuples from the *AllElectronics* customer database.

<i>RID</i>	<i>age</i>	<i>income</i>	<i>student</i>	<i>credit_rating</i>	<i>Class: buys_computer</i>
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Example 6.4 Predicting a class label using naïve Bayesian classification. We wish to predict the class label of a tuple using naïve Bayesian classification, given the same training data as in Example 6.3 for decision tree induction. The training data are in Table 6.1. The data tuples are described by the attributes *age*, *income*, *student*, and *credit_rating*. The class label attribute, *buys_computer*, has two distinct values (namely, {yes, no}). Let C_1 correspond to the class *buys_computer* = yes and C_2 correspond to *buys_computer* = no. The tuple we wish to classify is

$$X = (\text{age} = \text{youth}, \text{income} = \text{medium}, \text{student} = \text{yes}, \text{credit_rating} = \text{fair})$$

We need to maximize $P(X|C_i)P(C_i)$, for $i = 1, 2$. $P(C_i)$, the prior probability of each class, can be computed based on the training tuples:

$$P(\text{buys_computer} = \text{yes}) = 9/14 = 0.643$$

$$P(\text{buys_computer} = \text{no}) = 5/14 = 0.357$$

To compute $P(X|C_i)$, for $i = 1, 2$, we compute the following conditional probabilities:

$$P(\text{age} = \text{youth} | \text{buys_computer} = \text{yes}) = 2/9 = 0.222$$

$$P(\text{age} = \text{youth} | \text{buys_computer} = \text{no}) = 3/5 = 0.600$$

$$P(\text{income} = \text{medium} | \text{buys_computer} = \text{yes}) = 4/9 = 0.444$$

$$P(\text{income} = \text{medium} | \text{buys_computer} = \text{no}) = 2/5 = 0.400$$

$$P(\text{student} = \text{yes} | \text{buys_computer} = \text{yes}) = 6/9 = 0.667$$

$$P(\text{student} = \text{yes} | \text{buys_computer} = \text{no}) = 1/5 = 0.200$$

$$P(\text{credit_rating} = \text{fair} | \text{buys_computer} = \text{yes}) = 6/9 = 0.667$$

$$P(\text{credit_rating} = \text{fair} | \text{buys_computer} = \text{no}) = 2/5 = 0.400$$

Using the above probabilities, we obtain

$$\begin{aligned} P(X|\text{buys_computer} = \text{yes}) &= P(\text{age} = \text{youth} | \text{buys_computer} = \text{yes}) \times \\ &\quad P(\text{income} = \text{medium} | \text{buys_computer} = \text{yes}) \times \\ &\quad P(\text{student} = \text{yes} | \text{buys_computer} = \text{yes}) \times \\ &\quad P(\text{credit_rating} = \text{fair} | \text{buys_computer} = \text{yes}) \\ &= 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044. \end{aligned}$$

Similarly,

$$P(X|\text{buys_computer} = \text{no}) = 0.600 \times 0.400 \times 0.200 \times 0.400 = 0.019.$$

To find the class, C_i , that maximizes $P(X|C_i)P(C_i)$, we compute

$$P(X|\text{buys_computer} = \text{yes})P(\text{buys_computer} = \text{yes}) = 0.044 \times 0.643 = 0.028$$

$$P(X|\text{buys_computer} = \text{no})P(\text{buys_computer} = \text{no}) = 0.019 \times 0.357 = 0.007$$

Therefore, the naïve Bayesian classifier predicts *buys_computer* = yes for tuple X . ■

6.5.1 Using IF-THEN Rules for Classification

Rules are a good way of representing information or bits of knowledge. A **rule-based classifier** uses a set of IF-THEN rules for classification. An IF-THEN rule is an expression of the form

IF *condition* THEN *conclusion*.

An example is rule *R1*,

R1: IF *age = youth* AND *student = yes* THEN *buys_computer = yes*.

The “IF”-part (or left-hand side) of a rule is known as the **rule antecedent** or **precondition**. The “THEN”-part (or right-hand side) is the **rule consequent**. In the rule antecedent, the condition consists of one or more *attribute tests* (such as *age = youth*, and *student = yes*) that are logically ANDed. The rule’s consequent contains a class prediction (in this case, we are predicting whether a customer will buy a computer). *R1* can also be written as

R1: $(age = youth) \wedge (student = yes) \Rightarrow (buys_computer = yes)$.

If the condition (that is, all of the attribute tests) in a rule antecedent holds true for a given tuple, we say that the rule antecedent is **satisfied** (or simply, that the rule is satisfied) and that the rule **covers** the tuple.

A rule *R* can be assessed by its coverage and accuracy. Given a tuple, *X*, from a class-labeled data set, *D*, let n_{covers} be the number of tuples covered by *R*; $n_{correct}$ be the number of tuples correctly classified by *R*; and $|D|$ be the number of tuples in *D*. We can define the **coverage** and **accuracy** of *R* as

$$\text{coverage}(R) = \frac{n_{covers}}{|D|} \quad (6.19)$$

$$\text{accuracy}(R) = \frac{n_{correct}}{n_{covers}}. \quad (6.20)$$

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., whose attribute values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the tuples that it covers and see what percentage of them the rule can correctly classify.

References

- [1] Data Mining: Concepts and Techniques, Second Edition" Jiawei Han and Micheline Kamber"
- [2] .M.H. Dunham, " Data Mining Introductory and Advanced Topics", Pearson Education Jiawei Han and Micheline Kamber