
Clinical Data Mining

Lecture Four

By

Assist. Lect. Zainab M. Alameen

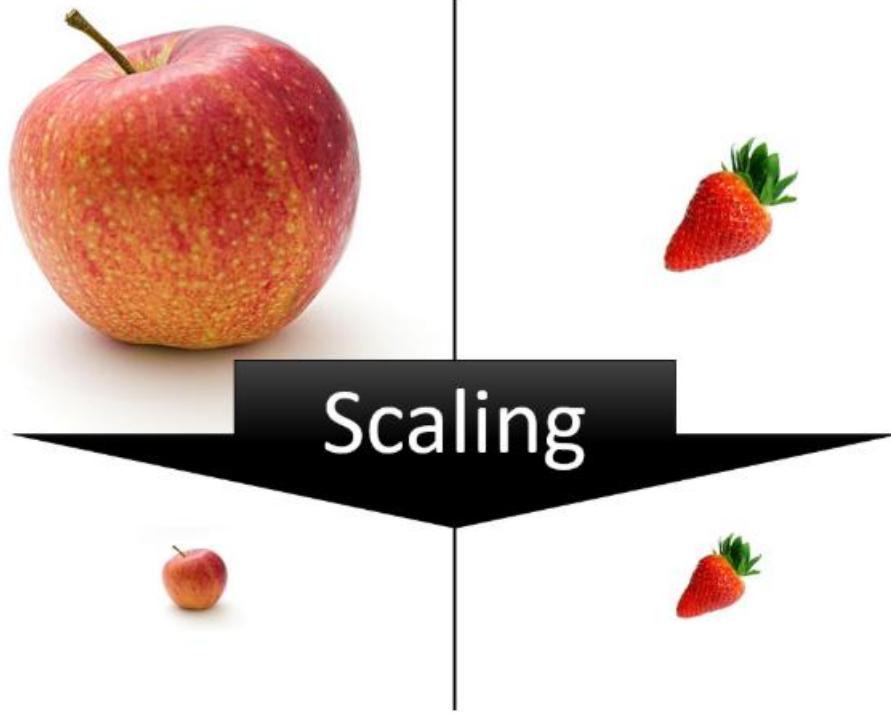
2025 - 2026

Data Preprocessing and Cleaning II

Lecture Keys:

- ▶ Introduction.
- ▶ What is Normalization?
- ▶ Normalization common types.
- ▶ Discretization.
- ▶ Types of Discretization.
- ▶ Homework (Assignment2).

Introduction:


► In clinical data mining, preprocessing is a critical step to ensure data quality and improve the performance of data mining algorithms.

After handling **missing values**, **inconsistencies**, and **duplicates**, the next essential tasks are:

- **Normalization**
- **Discretization**

What is Normalization:

- ▶ **Normalization:** is the process of **scaling numerical data** into a specific range, often $[0, 1]$ or $[-1, 1]$, to ensure that variables contribute equally to the analysis.
- ▶ **Why it's important in clinical data:**
 - Different lab measurements may have different units (e.g., blood glucose vs. blood pressure).
 - Prevents features with large ranges from dominating the analysis.
 - Improves the performance of algorithms (like k-means clustering or logistic regression).

Normalization:

► **Common methods:**

1. Min–Max Normalization

$$X_{\text{norm}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}}$$

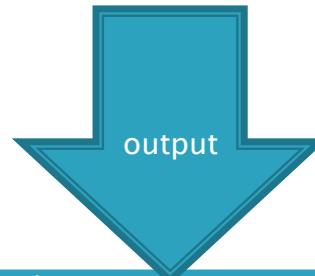
2. Z-score Normalization

$$X_{\text{norm}} = \frac{X - \mu}{\sigma}$$

1. Min–Max Normalization

► **Advantages:**

- Simple and easy to apply.
- Keeps all values within the same range.


► **Disadvantages:**

- Sensitive to outliers (extreme values can distort scaling).
- **Example (conceptual):**

Blood glucose levels between 85 and 240 mg/dL will be scaled between 0 and 1.

Min–Max Normalization

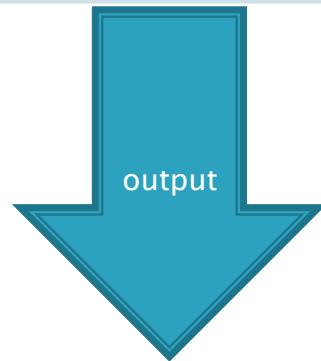
Patient_ID	Blood_Glucose	Cholesterol
1	85	180
2	120	220
3	160	200
4	200	250
5	240	300

Patient_ID	Glucose_MinMax	Cholesterol_MinMax
1	0.00	0.00
2	0.18	0.29
3	0.38	0.14
4	0.58	0.50
5	1.00	1.00

2. Z-Score Normalization (Standardization)

- ▶ Converts data to have **mean = 0** and **standard deviation = 1**.
- ▶ Formula:
 - $X_z = (X - \mu) / \sigma$
 - μ = mean, σ (sigma) = standard deviation.
- ▶ **Advantages:**
 - Works well when data contains outliers.
 - Useful when algorithms assume normally distributed data.

Z-Score Normalization (Standardization)


► Example (conceptual):

If a patient's cholesterol level is 250 mg/dL and the mean cholesterol is 200 mg/dL ($\sigma = 40$),
then:

► $Z = (250 - 200) / 40 = 1.25$ (meaning the value is 1.25 standard deviations above the mean).

Z-Score Normalization (Standardization)

Patient_ID	Blood_Glucose	Cholesterol
1	85	180
2	120	220
3	160	200
4	200	250
5	240	300

Patient_ID	Glucose_Zscore	Cholesterol_Zscore
1	-1.26	-1.10
2	-0.63	-0.27
3	0.00	-0.68
4	0.63	0.41
5	1.26	1.63

Comparison Table:

Method	Formula	Range	Sensitive to Outliers	Suitable for
Min-Max	$(X - X_{\min}) / (X_{\max} - X_{\min})$	0-1	Yes	Neural networks, decision trees
Z-Score	$(X - \mu) / \sigma$	Unbounded	No	Regression, clustering

Discretization

- ▶ Discretization is the process of **converting continuous attributes** into **categorical attributes**.
- ▶ **Example:**
 - Age (continuous) → Age Groups (0–18, 19–35, 36–60, 60+)
 - Blood pressure values → “Low”, “Normal”, “High”
- ▶ **Benefits:**
 - Simplifies models and improves interpretability.
 - Useful in algorithms that work better with categorical data.
 - Helps in identifying trends and patterns in medical datasets.
- ▶ **Techniques:**
 - **Equal-width binning**
 - **Equal-frequency binning**
 - **Clustering-based discretization**

Data Binning

Large Continuous Data

Grouped into

Small Discrete Bins

Types of Discretization:

▶ **Equal-Width Binning:**

The range of values is divided into intervals of equal size.

Example: glucose 70–200 divided into 3 equal bins → [70–113.3], [113.3–156.6], [156.6–200].

▶ **Equal-Frequency Binning:**

Each bin has (approximately) the same number of samples.

Example: sorting glucose values and dividing them so each bin has equal number of patients.

▶ **Custom (Domain-Based) Binning:**

Bins are based on **medical standards or expert rules**.

Example:

- $< 100 \text{ mg/dL} \rightarrow \text{Normal}$
- $100\text{--}125 \text{ mg/dL} \rightarrow \text{Pre-diabetic}$
- $\geq 126 \text{ mg/dL} \rightarrow \text{Diabetic}$

Homework

Assignment Title: Understanding Discretization in Clinical Data

Questions:

- ▶ Write a short report discussing the following points:
 - **Define** discretization and explain its importance in clinical data mining.
 - **Explain** the main types of discretization methods:
 - Provide a **real-world clinical scenario** (e.g., blood glucose or blood pressure data) and describe how discretization can make the data more useful for analysis or classification.
 - Discuss **advantages and possible limitations** of using discretization in medical data preprocessing.

The End

Thanks for your

listening