Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

R Il & -
AL MUSTAQBAL UNIVERSITY

aslall dls
S gl dakisdl @ e

Lecture (4 & 5): MapReduce

Subject: Big Data Analysis in Healthcare
Level: Fourth

Lecturer: Asst. Lecturer Qusai AL-Durrah
Duration: Two hours

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

1. Introduction

MapReduce represents the computational core of Hadoop, enabling massive datasets
to be processed efficiently across clusters of commodity servers.
Developed originally by Google and later adopted into Apache Hadoop, the model
abstracts the complexity of distributed processing, fault tolerance, and
synchronization.

Instead of writing intricate multi-threaded or network-aware code, developers define
two simple functions — Map and Reduce — and Hadoop manages all the
parallelization automatically.

In healthcare, where terabytes of clinical data, sensor streams, and genomic
sequences are produced daily, MapReduce provides a scalable approach for data
aggregation, pattern detection, and predictive analytics.
It is particularly relevant to the Smart Medical Systems Department because it
supports large-scale processing of medical images, diagnostic reports, and

continuous patient monitoring data.

2. Learning OQutcomes
By the end of this lecture, students will be able to:
. Explain: the workflow and key principles of the MapReduce model.

. Differentiate: between the Map and Reduce phases in Hadoop’s data
processing pipeline.

. Describe: the use of key—value pairs and the flow of data between mappers
and reducers.

. Discuss: the roles of combiners and partitioners in optimizing MapReduce
jobs.

. Apply: MapReduce to analyze sample healthcare datasets and derive
aggregated results.

Study Year: 2025-2026

1 L\

Al-Mustaqgbal University

@ College of Sciences
Y Intelligent Medical System Department

3. Conceptual Framework of MapReduce

The MapReduce paradigm is based on the principle of divide and conquer.
A dataset is split into smaller chunks that are processed in parallel across many
nodes.

Each node performs a map operation that transforms input records into intermediate
key—value pairs, followed by a reduce operation that aggregates all values associated
with the same key.

Formally:

« Map Function: (keyl, valuel) — list(key2, value?2)
Converts raw input data into intermediate representations.

Reduce Function: shuffle (key2, list(value2)) — list(value3)
Consolidates intermediate values to produce the final output.

This abstraction hides the complexity of communication, synchronization, and fault
handling, allowing developers to focus purely on the computation logic.

ah ah
Input Data Output

Figure 1: Conceptual View of MapReduce Workflow
4. Detailed Architecture and Data Flow
The Hadoop MapReduce engine executes jobs in distinct stages:

1. Input Splitting: Large input files in HDFS are divided into InputSplits, each
typically 64 MB or 128 MB.

2. RecordReader: It communicates with the inputSplit. And then converts the
data into key-value pairs suitable for reading by the Mapper. RecordReader

Page |3 Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

by default uses TextlnputFormat to convert data into a key-value pair.
Meaning it communicates to the InputSplit until the completion of file
reading. It assigns byte offset to each line present in the file. Then, these key-
value pairs are further sent to the mapper for further processing.

. Mapping: Each split is processed by a mapper, which emits intermediate
key—value pairs.

. Combining (optional): Combiner is Mini-reducer which performs local
aggregation on the mapper’s output. It minimizes the data transfer between
mapper and reducer. So, when the combiner functionality completes,
framework passes the output to the partitioner for further processing.

. Partitioning: Partitioner comes into the existence if we are working with

more than one reducer. It takes the output of the combiner and performs
partitioning. After that, each partition is sent to a reducer. Partitioning in
MapReduce execution allows even distribution of the map output over the
reducer.
Shuffling and Sorting: After partitioning, the output is shuffled to the
reduce node. The shuffling is the physical movement of the data which is
done over the network. As all the mappers finish and shuffle the output on the
reducer nodes. Then framework merges this intermediate output and sort.
This is then provided as input to reduce phase.

. Reducing: Reducer then takes set of intermediate key-value pairs produced
by the mappers as the input. After that runs a reducer function on each of
them to generate the output. The output of the reducer is the final output.
Then framework stores the output on HDFS.

. RecordWriter: It writes these output key-value pair from the Reducer phase
to the output files.

This process ensures data locality: computations occur on the same nodes that store

the data, minimizing costly network transfer.

Study Year: 2025-2026

Al-Mustaqgbal University

College of Sciences
Intelligent Medical System Department

" Intermed lata)
| keyvalUepalr¥

q o 1
Data - P T S |

| Inpat output | Data |

88 Stored | Farmat Format | Stored §

o | e i & 5 & : 5 | an

I Substitute
' Intermediate
Keyvalue palr: 7

| key.value pair

Figure 2: MapReduce Execution Pipeline
4. JobTracker and TaskTracker in Classic MapReduce

Before Hadoop 2.0 and YARN, Hadoop’s MapReduce system relied on two main
daemons — the JobTracker and the TaskTracker — which coordinated all
distributed computations across the cluster.

4.1 JobTracker

The JobTracker acted as the master node responsible for the coordination and
management of MapReduce jobs.
Its core functions included:

Task Scheduling: Assigning map and reduce tasks to available
TaskTrackers.

Job Monitoring: Tracking task progress and updating overall job status.
Fault Tolerance: Detecting node failures and reassigning unfinished tasks.

Resource Management: Keeping record of available TaskTrackers and job
queues.

Essentially, the JobTracker coordinated the entire cluster — ensuring jobs were
balanced, monitored, and completed successfully.

Page |5 Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

4.2 TaskTracker

Each worker node in the cluster ran a TaskTracker daemon that performed the
assigned tasks.
Its responsibilities included:

Task Execution: Running map or reduce operations as instructed by the
JobTracker.

Progress Reporting: Sending regular seartbeats back to the JobTracker to
confirm status.

Resource Control: Managing a fixed number of task slots (e.g., two map
slots and two reduce slots per node).

Error Handling: Retrying failed tasks locally before reporting them as
failed globally.

Job completion and cleanup: Upon completion, TaskTrackers reported
final status and cleaned up temporary data.

If a TaskTracker stopped responding, the JobTracker automatically reassigned its
tasks to other healthy nodes.

4.3 Communication Flow

. Job Submission: The client submits a job to the JobTracker.

. Task Assignment: The JobTracker divides the job into smaller tasks and

distributes them to TaskTrackers.

. Progress Updates: TaskTrackers send heartbeat signals and task status

reports back to the JobTracker.

. Completion: When all tasks are finished, the JobTracker marks the job as

complete and writes results to HDFS.

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

Job Tracker ‘

Task Tracker Task Tracker Task Tracker ’

Mapper Mapper

Shuffle and Sort

u Reducer D Reducer u Reducer

Figure 3: JobTracker—TaskTracker Communication Flow

4.4 Transition to YARN

As clusters grew larger (beyond 4,000 nodes), the JobTracker became a
performance bottleneck.

Hadoop 2.0 replaced this architecture with YARN (Yet Another Resource
Negotiator), which divided the JobTracker’s roles into:

« ResourceManager: Manages cluster-wide resource allocation.
« ApplicationMaster: Oversees the lifecycle of a single MapReduce job.

This design allowed for improved scalability, better fault isolation, and support for
multiple processing frameworks (e.g., Spark, Tez, MapReduce v2) running on the
same cluster.

Study Year: 2025-2026

Al-Mustaqgbal University

College of Sciences

Intelligent Medical System Department

6. Key System Components

Component

Function

JobTracker/ ApplicationMaster

Coordinates MapReduce job execution (in
YARN, ApplicationMaster replaces JobTracker).

TaskTracker / NodeManager

Executes individual map and reduce tasks on
worker nodes.

Mapper

Processes input records and produces
intermediate key—value pairs.

Combiner

Performs local aggregation to reduce data sent
over the network.

Partitioner

Determines how intermediate keys are assigned
to reducers.

Reducer

Aggregates all values for each key and writes
final output to HDFS.

7. MapReduce Examples
7.1 Word Count Example:

Let us understand, how a MapReduce works by taking an example where I have
a text file called example.txt whose contents are as follows:

Dear, Bear, River, Car, Car, River, Deer, Car and Bear

Now, suppose, we have to perform a word count on the sample.txt using MapReduce.

So, we will be finding the unique words and the number of occurrences of those

unique words.

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

Splitting Mapping Shuffling Reducing Final Result

List(K2, V2) K2, List(V2)
K1, V1

List(K3, V3)
Deer Bear River

Car Car River Car Car River
Deer Car Bear

First, we divide the input into three splits as shown in the figure. This will
distribute the work among all the map nodes.

Then, we tokenize the words in each of the mappers and give a hardcoded
value (1) to each of the tokens or words. The rationale behind giving a
hardcoded value equal to 1 is that every word, in itself, will occur once.

Now, a list of key-value pair will be created where the key is nothing but the
individual words and value is one. So, for the first line (Dear Bear River) we
have 3 key-value pairs — Dear, 1; Bear, 1; River, 1. The mapping process
remains the same on all the nodes.

After the mapper phase, a partition process takes place where sorting and
shuftling happen so that all the tuples with the same key are sent to the
corresponding reducer.

So, after the sorting and shuffling phase, each reducer will have a unique key
and a list of values corresponding to that very key. For example, Bear, [1,1];
Car, [1,1,1].., etc.

Now, each Reducer counts the values which are present in that list of values.
As shown in the figure, reducer gets a list of values which is [1,1] for the key
Bear. Then, it counts the number of ones in the very list and gives the final
output as — Bear, 2.

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

 Finally, all the output key/value pairs are then collected and written in the
output file.

7.2 Applying MapReduce on MovieLens Dataset

The MovieLens Dataset is commonly used to demonstrate distributed data
processing concepts such as aggregation, sorting, and reduction.
The dataset contains the following columns:

USER ID MOVIE ID RATING TIMESTAMP
196 242 3 881250949
186 302 3 891717742
196 377 878887116
244 51 880606923
166 346 886397596
186 474 4 884182806
186 265 2 881171488

Step 1: First we have to map the values , it is happen in 1st phase of Map Reduce
model.

196:242 ; 186:302 ; 196:377 ; 244:51 ; 166:346 ; 186:274 ; 186:265
Step 2: After Mapping we have to shuffle and sort the values.

166:346 ; 186:302,274,265 ; 196:242,377 ; 244:51

Step 3: After completion of stepl and step2 we have to reduce each key's values.

Now, put all values together

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

Mapper

l

196:242 ; 186:302 ; 196:377 ; 244:51 ; 166:346 ; 186:274 ; 186:265

l

Shuffle and Sort

l

166:346 _; 186:302,274,265 ; 196:242,377 ; 244:51

l

Reducer

l

166:1 ; 186:3 ; 196:2 ; 244:1

Code:
from mrjob.job import MRJob

from mrjob.step import MRStep

class RatingsBreak(MRJob):

def steps(self):
return [
MRstep(mapper=self.mapper get ratings,
reducer=self.reducer count ratings)
]
MAPPER CODE
def mapper get ratings(self, , line):
(User_id, Movie_id, Rating, Timestamp) = line.split('/t")
yield rating,
REDUCER CODE

Page |11 Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

def reducer count ratings(self, key, values):
yield key, sum(values)
8. Performance Optimization Concepts
1. Combiners — Act as “mini-reducers” to minimize shuffle volume.
2. Partitioners — Ensure balanced distribution of keys across reducers.

3. Speculative Execution — Hadoop may duplicate slow tasks to avoid
bottlenecks.

. Counters and Metrics — Monitor job progress and collect statistics for
analysis.

8. Advantages of MapReduce
The two biggest advantages of MapReduce are:
1. Parallel Processing:

In MapReduce, we are dividing the job among multiple nodes and each node works
with a part of the job simultaneously. So, MapReduce is based on Divide and
Conquer paradigm which helps us to process the data using different machines. As
the data is processed by multiple machines instead of a single machine in parallel,

the time taken to process the data gets reduced by a tremendous amount as shown in
the figure below.

Slave A Slave A

Data > > %
9

Slave B Slave E Slave B

QO g &

>

/ Master \

Slave E

Slave C Slave D Slave C Slave D

1. Moving data to the Processing Unit 2. Moving Processing Unit to the data
(Traditional Approach) (MapReduce Approach)

Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

2. Data Locality:

Instead of moving data to the processing unit, we are moving the processing unit to
the data in the MapReduce Framework. In the traditional system, we used to bring
data to the processing unit and process it. But, as the data grew and became very
huge, bringing this huge amount of data to the processing unit posed the following
issues:

Moving huge data to processing is costly and deteriorates the network
performance.

Processing takes time as the data is processed by a single unit which becomes
the bottleneck.

« The master node can get over-burdened and may fail.

Now, MapReduce allows us to overcome the above issues by bringing the processing

unit to the data. So, as you can see in the above image that the data is distributed
among multiple nodes where each node processes the part of the data residing on it.
This allows us to have the following advantages:

« Itis very cost-effective to move processing unit to the data.

The processing time is reduced as all the nodes are working with their part of
the data in parallel.

Every node gets a part of the data to process and therefore, there is no chance
of a node getting overburdened.

9. Summary

MapReduce abstracts the complexities of parallel computation into two clear
functions — Map and Reduce — that enable high-throughput processing of massive
datasets.

It provides automatic load balancing, data locality, and fault tolerance, making it a
revolutionary approach for Big Data analytics.
In healthcare, MapReduce empowers researchers to integrate and analyze multi-

Page |13 Study Year: 2025-2026

Al-Mustaqgbal University
College of Sciences
Intelligent Medical System Department

institutional datasets, unlocking patterns that drive clinical insight and improve
patient care.

Study Year: 2025-2026

