
                                                                                                     

 

P a g e  | 1                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

  

  العلوم كلية 
  الانظمة الطبية الذكية   م ـــــــ ـــس ــق 

 

Lecture (4 & 5): MapReduce 

 
  
  
 

  

Subject: Big Data Analysis in Healthcare 
Level: Fourth    
Lecturer:  Asst. Lecturer Qusai AL-Durrah  
Dura on: Two hours  

 

 



                                                                                                     

 

P a g e  | 2                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

1. Introduction 

MapReduce represents the computational core of Hadoop, enabling massive datasets 
to be processed efficiently across clusters of commodity servers. 
Developed originally by Google and later adopted into Apache Hadoop, the model 
abstracts the complexity of distributed processing, fault tolerance, and 
synchronization. 
Instead of writing intricate multi-threaded or network-aware code, developers define 
two simple functions — Map and Reduce — and Hadoop manages all the 
parallelization automatically. 

In healthcare, where terabytes of clinical data, sensor streams, and genomic 
sequences are produced daily, MapReduce provides a scalable approach for data 
aggregation, pattern detection, and predictive analytics. 
It is particularly relevant to the Smart Medical Systems Department because it 
supports large-scale processing of medical images, diagnostic reports, and 
continuous patient monitoring data. 

2. Learning Outcomes 

By the end of this lecture, students will be able to: 

1. Explain: the workflow and key principles of the MapReduce model. 

2. Differentiate: between the Map and Reduce phases in Hadoop’s data 
processing pipeline. 

3. Describe: the use of key–value pairs and the flow of data between mappers 
and reducers. 

4. Discuss: the roles of combiners and partitioners in optimizing MapReduce 
jobs. 

5. Apply: MapReduce to analyze sample healthcare datasets and derive 
aggregated results. 

 



                                                                                                     

 

P a g e  | 3                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

3. Conceptual Framework of MapReduce 

The MapReduce paradigm is based on the principle of divide and conquer. 
A dataset is split into smaller chunks that are processed in parallel across many 
nodes. 
Each node performs a map operation that transforms input records into intermediate 
key–value pairs, followed by a reduce operation that aggregates all values associated 
with the same key. 

Formally: 

 Map Function: (key1, value1) → list(key2, value2) 
Converts raw input data into intermediate representations. 

 Reduce Function: shuffle (key2, list(value2)) → list(value3) 
Consolidates intermediate values to produce the final output. 

This abstraction hides the complexity of communication, synchronization, and fault 
handling, allowing developers to focus purely on the computation logic. 

 

Figure 1: Conceptual View of MapReduce Workflow 

4. Detailed Architecture and Data Flow 

The Hadoop MapReduce engine executes jobs in distinct stages: 

1. Input Splitting: Large input files in HDFS are divided into InputSplits, each 
typically 64 MB or 128 MB. 

2. RecordReader: It communicates with the inputSplit. And then converts the 
data into key-value pairs suitable for reading by the Mapper. RecordReader 



                                                                                                     

 

P a g e  | 4                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

by default uses TextInputFormat to convert data into a key-value pair. 
Meaning it communicates to the InputSplit until the completion of file 
reading. It assigns byte offset to each line present in the file. Then, these key-
value pairs are further sent to the mapper for further processing. 

3. Mapping : Each split is processed by a mapper, which emits intermediate 
key–value pairs. 

4. Combining (optional): Combiner is Mini-reducer which performs local 
aggregation on the mapper’s output. It minimizes the data transfer between 
mapper and reducer. So, when the combiner functionality completes, 
framework passes the output to the partitioner for further processing. 

5. Partitioning: Partitioner comes into the existence if we are working with 
more than one reducer. It takes the output of the combiner and performs 
partitioning. After that, each partition is sent to a reducer. Partitioning in 
MapReduce execution allows even distribution of the map output over the 
reducer. 

6.  Shuffling and Sorting: After partitioning, the output is shuffled to the 
reduce node. The shuffling is the physical movement of the data which is 
done over the network. As all the mappers finish and shuffle the output on the 
reducer nodes. Then framework merges this intermediate output and sort. 
This is then provided as input to reduce phase. 

7. Reducing: Reducer then takes set of intermediate key-value pairs produced 
by the mappers as the input.  After that runs a reducer function on each of 
them to generate the output. The output of the reducer is the final output. 
Then framework stores the output on HDFS. 

8. RecordWriter: It writes these output key-value pair from the Reducer phase 
to the output files. 

This process ensures data locality: computations occur on the same nodes that store 
the data, minimizing costly network transfer. 

 



                                                                                                     

 

P a g e  | 5                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

 

Figure 2: MapReduce Execution Pipeline 

4. JobTracker and TaskTracker in Classic MapReduce 

Before Hadoop 2.0 and YARN, Hadoop’s MapReduce system relied on two main 
daemons — the JobTracker and the TaskTracker — which coordinated all 
distributed computations across the cluster. 

4.1 JobTracker 

The JobTracker acted as the master node responsible for the coordination and 
management of MapReduce jobs. 
Its core functions included: 

 Task Scheduling: Assigning map and reduce tasks to available 
TaskTrackers. 

 Job Monitoring: Tracking task progress and updating overall job status. 

 Fault Tolerance: Detecting node failures and reassigning unfinished tasks. 

 Resource Management: Keeping record of available TaskTrackers and job 
queues. 

Essentially, the JobTracker coordinated the entire cluster — ensuring jobs were 
balanced, monitored, and completed successfully. 



                                                                                                     

 

P a g e  | 6                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

4.2 TaskTracker 

Each worker node in the cluster ran a TaskTracker daemon that performed the 
assigned tasks. 
Its responsibilities included: 

 Task Execution: Running map or reduce operations as instructed by the 
JobTracker. 

 Progress Reporting: Sending regular heartbeats back to the JobTracker to 
confirm status. 

 Resource Control: Managing a fixed number of task slots (e.g., two map 
slots and two reduce slots per node). 

 Error Handling: Retrying failed tasks locally before reporting them as 
failed globally. 

 Job completion and cleanup: Upon completion, TaskTrackers reported 
final status and cleaned up temporary data. 

If a TaskTracker stopped responding, the JobTracker automatically reassigned its 
tasks to other healthy nodes. 

4.3 Communication Flow 

1. Job Submission: The client submits a job to the JobTracker. 

2. Task Assignment: The JobTracker divides the job into smaller tasks and 
distributes them to TaskTrackers. 

3. Progress Updates: TaskTrackers send heartbeat signals and task status 
reports back to the JobTracker. 

4. Completion: When all tasks are finished, the JobTracker marks the job as 
complete and writes results to HDFS. 



                                                                                                     

 

P a g e  | 7                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

 

Figure 3: JobTracker–TaskTracker Communication Flow 

4.4 Transition to YARN 

As clusters grew larger (beyond 4,000 nodes), the JobTracker became a 
performance bottleneck. 
Hadoop 2.0 replaced this architecture with YARN (Yet Another Resource 
Negotiator), which divided the JobTracker’s roles into: 

 ResourceManager: Manages cluster-wide resource allocation. 

 ApplicationMaster: Oversees the lifecycle of a single MapReduce job. 

This design allowed for improved scalability, better fault isolation, and support for 
multiple processing frameworks (e.g., Spark, Tez, MapReduce v2) running on the 
same cluster. 

 

 

 

 

 

 



                                                                                                     

 

P a g e  | 8                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

6. Key System Components 

Component Function 

JobTracker/ ApplicationMaster 
Coordinates MapReduce job execution (in 
YARN, ApplicationMaster replaces JobTracker). 

TaskTracker / NodeManager 
Executes individual map and reduce tasks on 
worker nodes. 

Mapper 
Processes input records and produces 
intermediate key–value pairs. 

Combiner 
Performs local aggregation to reduce data sent 
over the network. 

Partitioner 
Determines how intermediate keys are assigned 
to reducers. 

Reducer 
Aggregates all values for each key and writes 
final output to HDFS. 

7. MapReduce  Examples 

7.1 Word Count Example: 

Let us understand, how a MapReduce works by taking an example where I have 
a text file called example.txt whose contents are as follows: 

Dear, Bear, River, Car, Car, River, Deer, Car and Bear 

Now, suppose, we have to perform a word count on the sample.txt using MapReduce. 
So, we will be finding the unique words and the number of occurrences of those 
unique words. 

 



                                                                                                     

 

P a g e  | 9                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

 

 First, we divide the input into three splits as shown in the figure. This will 
distribute the work among all the map nodes. 

 Then, we tokenize the words in each of the mappers and give a hardcoded 
value (1) to each of the tokens or words. The rationale behind giving a 
hardcoded value equal to 1 is that every word, in itself, will occur once. 

 Now, a list of key-value pair will be created where the key is nothing but the 
individual words and value is one. So, for the first line (Dear Bear River) we 
have 3 key-value pairs – Dear, 1; Bear, 1; River, 1. The mapping process 
remains the same on all the nodes. 

 After the mapper phase, a partition process takes place where sorting and 
shuffling happen so that all the tuples with the same key are sent to the 
corresponding reducer. 

 So, after the sorting and shuffling phase, each reducer will have a unique key 
and a list of values corresponding to that very key. For example, Bear, [1,1]; 
Car, [1,1,1].., etc.  

 Now, each Reducer counts the values which are present in that list of values. 
As shown in the figure, reducer gets a list of values which is [1,1] for the key 
Bear. Then, it counts the number of ones in the very list and gives the final 
output as – Bear, 2. 



                                                                                                     

 

P a g e  | 10                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

 Finally, all the output key/value pairs are then collected and written in the 
output file. 

7.2 Applying MapReduce on MovieLens Dataset 

The MovieLens Dataset is commonly used to demonstrate distributed data 
processing concepts such as aggregation, sorting, and reduction. 
The dataset contains the following columns: 

USER_ID MOVIE_ID RATING TIMESTAMP 

196 242 3 881250949 

186 302 3 891717742 

196 377 1 878887116 

244 51 2 880606923 

166 346 1 886397596 

186 474 4 884182806 

186 265 2 881171488 

Step 1: First we have to map the values , it is happen in 1st phase of Map Reduce 
model. 

196:242   ;  186:302   ;  196:377   ;  244:51   ;  166:346   ;  186:274   ;  186:265 

Step 2:  After Mapping we have to shuffle and sort the values. 

166:346   ;  186:302,274,265   ;  196:242,377   ;  244:51   

Step 3:  After completion of step1 and step2 we have to reduce each key's values. 

Now, put all values together 



                                                                                                     

 

P a g e  | 11                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

 

Code: 

from mrjob.job import MRJob 

from mrjob.step import MRStep 

class RatingsBreak(MRJob): 

    def steps(self): 

        return [ 

            MRstep(mapper=self.mapper_get_ratings, 

                   reducer=self.reducer_count_ratings) 

        ] 

        # MAPPER CODE 

    def mapper_get_ratings(self, _, line): 

          (User_id, Movie_id, Rating, Timestamp) = line.split('/t') 

          yield rating, 

        # REDUCER CODE 



                                                                                                     

 

P a g e  | 12                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

    def reducer_count_ratings(self, key, values): 

          yield key, sum(values) 

8. Performance Optimization Concepts 

1. Combiners – Act as “mini-reducers” to minimize shuffle volume. 

2. Partitioners – Ensure balanced distribution of keys across reducers. 

3. Speculative Execution – Hadoop may duplicate slow tasks to avoid 
bottlenecks. 

4. Counters and Metrics – Monitor job progress and collect statistics for 
analysis. 

8. Advantages of MapReduce 

The two biggest advantages of MapReduce are: 

      1. Parallel Processing: 

In MapReduce, we are dividing the job among multiple nodes and each node works 
with a part of the job simultaneously. So, MapReduce is based on Divide and 
Conquer paradigm which helps us to process the data using different machines. As 
the data is processed by multiple machines instead of a single machine in parallel, 
the time taken to process the data gets reduced by a tremendous amount as shown in 
the figure below. 

 

 



                                                                                                     

 

P a g e  | 13                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

2. Data Locality:  

Instead of moving data to the processing unit, we are moving the processing unit to 
the data in the MapReduce Framework.  In the traditional system, we used to bring 
data to the processing unit and process it. But, as the data grew and became very 
huge, bringing this huge amount of data to the processing unit posed the following 
issues:  

 Moving huge data to processing is costly and deteriorates the network 
performance.  

 Processing takes time as the data is processed by a single unit which becomes 
the bottleneck. 

 The master node can get over-burdened and may fail.   

Now, MapReduce allows us to overcome the above issues by bringing the processing 
unit to the data. So, as you can see in the above image that the data is distributed 
among multiple nodes where each node processes the part of the data residing on it. 
This allows us to have the following advantages: 

 It is very cost-effective to move processing unit to the data. 

 The processing time is reduced as all the nodes are working with their part of 
the data in parallel. 

 Every node gets a part of the data to process and therefore, there is no chance 
of a node getting overburdened.  

9. Summary 

MapReduce abstracts the complexities of parallel computation into two clear 
functions — Map and Reduce — that enable high-throughput processing of massive 
datasets. 
It provides automatic load balancing, data locality, and fault tolerance, making it a 
revolutionary approach for Big Data analytics. 
In healthcare, MapReduce empowers researchers to integrate and analyze multi-



                                                                                                     

 

P a g e  | 14                                                                                              Study Year: 2025-2026 

Al-Mustaqbal University 
College of Sciences 

Intelligent Medical System Department 

institutional datasets, unlocking patterns that drive clinical insight and improve 
patient care. 

 


