Deep Learning
Lecture-5

Asst. Lect. Ali Al-khawaja

2025-2026 F AT
\ Class Room/

Neural Network Learning rules

Y

Learning
signal e

generator %

w,=[w,w,...w,] is the weight vector ¢
undergoing training r=r(w,Xx, d‘.)

Aw,(t) = cr [wi(1), x(1), d(1)] x(1)

¢ —learning constant
w;(t + 1) = w,(t) + cr [w, (), x(0), d,(1)] x(¢)

Hebbian Learning Rule

FEED FORWARD UNSUPERVISED LEARNING

* The learning signal is equal to the
neuron’s output

= flwix)

Aw,; = ¢f(WX)x

The single weight w;; is ‘adapted using the following increment:
\ Aw;; = of (WiX)x;
This can be written briefly as

Aw; = cox;, forj=1,2,...,n

Features of Hebbian Learning

» Feedforward unsupervised learning

* “When an axon of a cell A is near enough
to exicite a cell B and repeatedly and
persistently takes place in firing it, some
growth process or change takes place in
one or both cells increasing the efficiency’

* If 0x; is positive the results is increase in
weight else vice versa

b

Example-zurada-p.61

This example illustrates Hebbian learning with binary and continuous acti-
vation functions of a very simple network. Assume the network shown in
Figure 2.22 with the initial weight vector

1
—1
1 =
w 0
0.5
needs to be trained using the set of three input vectors as below
1 1 0
X, — -2 X, — —0.5 Xa = 1
1 1.5 2 —2 > 3 —1
0 —1.5 1.5

for an arbitrary choice of learning constant ¢ = 1. Since the initial weights
are of nonzero value, the network has apparently been trained before-
hand. Assume first that bipolar binary neurons are used, and thus f(ner) =
sgn (net).

Step 1 Input x, applied to the network results in activation net! as below:

1
1 1 —2 —
net' =w'x; =1 —1 0 0.5] (s| =3

0

Initial
Input weights

Figure 2.22 Network for training in Examples 2.4 through 2.6.

The updated weights are
w=w!+ sgn(netl)xl =w! + X;

and plugging numerical values we obtain

1 1 2
-1 -2 | _|-3
W= o | T 1.5 1.5
0.5 0 0.5

where the superscript on the right side of the expression denotes the
number of the current adjustment step.

Step 2 This learning step is with x, as input:

nett = w'x, = [2 -3 15 05]

The updated weights are

3 2

Step 3 For input x5, we obtain in this step

net =wwx;=[1 -25 35 2]

w = w + sgn(netz)xz =W — X, =

Il

—0.25

The updated weights are

S
4 _ 3 A = wd —xa = | 732
w w- + sgn(net’)x; = W — Xj 45
| 05

It can be seen that learning with discrete f(net) and ¢ = 1 results in

adding or subtracting the entire input pattern vectors to and from the weight
vector, respectively. In the case of a continuous f(net), the weight incre-
menting / decrementing vector is scaled down to a fractional value of the
input pattern.

* For the same inputs for bipolar continuous
activation function the final updated weight
IS given by

f(net'y = 0.905 f(net*) = —0.077
" 1.9057 " 1.828]
W= | 281 Wl = | ~2772
1.357 1.512
05 . 0.616_
f(net’) = —0.932

" 1.8287

Wt = | 7370

2.44

| —0.783 |

Perceptron Learning rule

* Learning signal is the difference between the
desired and actual neuron’s response

* Learning is supervised

c A
r=d; — o

0; = sgn(wx),

Aw; = ¢ [d; — sgn(w'x)] x

I

- 0.6
—0.4
0.1

0.5

d,

0 -
1.5

-0.5

-1 |

c = 0.1.

{

= —1,d2 - _I,andd?, = 1-.

Example p.65

This example illustrates the perceptron learning rule of the network shown
in Figure 2.23. The set of input training vectors is as follows:

1 0 —1
—2 1.5 1

X1 = ol *7 | -os|° *7 0.5
—1 —1 —1

and the initial weight vector w! is assumed identical as in Example 2.4. The

learning constant is assumed to be ¢ = 0.1. The teacher’s desired responses
for x,, X,, X3 ared; = —1,d, = —1, and d; = 1, respectively. The learning
according to the perceptron learning rule progresses as follows.

Step 1 Input is x;, desired output is d,:
net' = w'x; =[1 —1 0 0.5] = 2.5

Correction in this step is necessary since d; ¥ sgn(2.5). We thus obtain
updated weight vector

w2 =w! +0.1(—1 — Dx,

Plugging in numerical values we obtain

1 1 0.8
2 - 1 . _2 — “‘0.6
w 0 0.2 0 0

0.5 —1 0.7

Step 2 Input is x,, desired output is d,. For the present weight vector w*
we compute the activation value nef* as follows:

087
net = w'x, = [0 15 -05 -1] _8'6 =-16

| 07

Correction is not performed in this step since d, = sgn(—1.6)

Step 3 Input is x;, desired output is ds, present weight vector is w°.
Computing nef we obtain:

© 08
~06
0

0.7

net =wix;=[-1 1 05 -1] -2.1

e

Correction is necessary in this step since d; # sgn(—2.1). The updated

weight values are

or

wh=w +0.0(1 + Dx,

© 081

-0.6
0

0.7

+0.2

-1
1
0.5

-1

[0.6

-0.4
0.1

| 05

Delta Learning Rule

Only valid for continuous activation function
Used in supervised training mode
Learning signal for this rule is called delta

The aim of the delta rule is to minimize the error over all training
patterns

X, Continuous
percepiion

_1'2 -

Finer,)

f{nﬂrj} ol i

Delta Learning Rule Contd.

r = [d; = fWX))f (W)

Learning rule is derived from the condition of least squared error.

Calculating the gradient vector with respect to wi

EZ2 %({f,. — 0,
VE = —(d; — op)f"(Wx)x
The components of the gradient vector are

dlE
aw .

i

= —(d; —o)f"(wix)x;, forj=1,2,...,n

Minimization of error requires the weight changes to be in the negative
gradient direction

Aw, = n(d, — 0;)f" (net;)x

Widrow-Hoff learning Rule

Also called as least mean square learning rule
Introduced by Widrow(1962), used in supervised learning
Independent of the activation function

Special case of delta learning rule wherein activation function is an
identity function ie f(net)=net

Minimizes the squared error between the desired output value d,
and net,

A
r=d; — wx

The weight vector increment under this learning rule is

Aw; = c(d; — wx)x

Winner-Take-All learning rules

(adjusted weights are highlighted)

Winner-Take-All Learning rule
Contd...

Can be explained for a layer of neurons

Example of competitive learning and used for
unsupervised network training

Learning is based on the premise that one of the
neurons in the layer has a maximum response
due to the input x

This neuron is declared the winner with a weight
I
Wi = [wml Wpo =°° wmn]
Its increment is computed as follows

Aw, = a(x — w,,)

he winner selection is based on the following criterion of maximum

ctivation among all p neurons participating'in a competition:;,
t "
W X = -max (Wx
m i=l.2,...,p(:)

Summary of learning rules

Summary of learning rules and their properties.

number
j=1,2,...,n

Single weight
Learning adjustment Initial Neuron Neuron
rule Awj weights Learning characteristics /Layer
Hebbian CO;X;j 0 U Any Neuron
i=1,2 ...,n
Perceptron ¢ [d; — sgn (wix)] x; Any S Binary Neuron
J=1.2,...,n bipolar, or
Binary
unipolar
Delta c(d; — 0;)f'(net;)x; Any S Continuous Neuron
i=12 ...,n
Widrow-Hoff c(d; — wWix)x; Any S Any Neuron
j=12 ...,n
Winner-take-all ~ Aw,,; = a(x; — wp,;) Random U Continuous Layer of
m-winning neuron Normalized P neurons

Thank you...

Any questions??

qu;ﬂ daga ﬁua;m .BJA.A\.AAJ\ dP :\.a;\)l\ a3

9 2350 Lwidl QR Code Amymdl Laiudl o) zuse oa
Aadldl)) yaladll

J

My google site

	Slide 1
	Slide 2: Neural Network Learning rules
	Slide 3: Hebbian Learning Rule
	Slide 4: Features of Hebbian Learning
	Slide 5: Example-zurada-p.61
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Perceptron Learning rule
	Slide 11
	Slide 12: Example p.65
	Slide 13
	Slide 14
	Slide 15: Delta Learning Rule
	Slide 16: Delta Learning Rule Contd.
	Slide 17: Widrow-Hoff learning Rule
	Slide 18: Winner-Take-All learning rules
	Slide 19: Winner-Take-All Learning rule Contd…
	Slide 20
	Slide 21: Summary of learning rules
	Slide 22

