
Deep Learning

 Lecture-9&10

Class Room

Asst. Lect. Ali Al-khawaja

2025-2026

Performance vs Sample Size

Size of Data

P
er

fo
rm

an
ce

Traditional ML algorithms

Supervised Learning

• Traditional pattern recognition models work with hand

crafted features and relatively simple trainable classifiers.

Limitations

• Very tedious and costly to develop hand crafted features.

• The hand-crafted features are usually highly dependents

on one application.

Extract

Hand

Crafted

Features

Trainable

Classifier

(e.g. SVM,

Random

Forrest)

Output

(e.g.

Outdoor Yes

or No)

Deep Learning

• Deep learning has an inbuilt automatic multi stage

feature learning process that learns rich hierarchical

representations (i.e. features).

Low

Level

Features

Mid

Level

Features

Output

(e.g. outdoor,

indoor)

High

Level

Features

Trainable

Classifier

Deep Learning

• Image

Pixel Edge Texture Motif Part Object

• Text

Character Word Word-group Clause Sentence Story

• Each module in Deep Learning transforms its input

representation into a higher-level one, in a way similar to

human cortex.

Low

Level

Features

Mid

Level

Features
Output

High

Level

Features

Trainable

ClassifierInput

Let us see how it all works!

A Simple Neural Network

• An Artificial Neural Network is an information processing

paradigm that is inspired by the biological nervous systems, such

as the human brain’s information processing mechanism.

x1

x2

x3

x4

Input Hidden Layers

Y

Output

a1(1)

a2(1)

a3(1)

a4(1)

a1(2)

A Simple Neural Network

x1

x2

x3

x4

a1(1)

w4

w3

w2

w1

𝑎1(1) = 𝑓 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + 𝑤4 ∗ 𝑥4

f() is activation function: Relu or sigmoid

𝑎1(1) = 𝑚𝑎𝑥 0,𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + 𝑤4 ∗ 𝑥4

𝑅𝑒𝑙𝑢:max(0, 𝑥)

1

1 + 𝑒−𝑤∗𝑎1(2)

Softmax
x1

x2

x3

x4

Y

a1(1)

a2(1)

a3(1)

a4(1)

a1(2)

Number of Parameters

4*4 + 4 +1

x1

x2

x3

x4

Input Hidden Layers

Y

Output

a1(1)

a2(1)

a3(1)

a4(1)

a1(2)

Softmax

If the input is an Image?

Number of Parameters

480000*480000 + 480000 +1 = approximately 230 Billion !!!

480000*1000 + 1000 +1 = approximately 480 million !!!

400 X 400 X 3

x1

x2

x3

x480000

Input Hidden Layers

Y

Output

a1(1)

a2(1)

a3(1)

a480000(1)

a1(2)

Let us see how convolutional layers help.

Convolutional Layers

• Filter

1 1 1 1 1 1 0.015686 0.015686 0.011765 0.015686 0.015686 0.015686 0.015686 0.964706 0.988235 0.964706 0.866667 0.031373 0.023529 0.007843

0.007843 0.741176 1 1 0.984314 0.023529 0.019608 0.015686 0.015686 0.015686 0.011765 0.101961 0.972549 1 1 0.996078 0.996078 0.996078 0.058824 0.015686

0.019608 0.513726 1 1 1 0.019608 0.015686 0.015686 0.015686 0.007843 0.011765 1 1 1 0.996078 0.031373 0.015686 0.019608 1 0.011765

0.015686 0.733333 1 1 0.996078 0.019608 0.019608 0.015686 0.015686 0.011765 0.984314 1 1 0.988235 0.027451 0.015686 0.007843 0.007843 1 0.352941

0.015686 0.823529 1 1 0.988235 0.019608 0.019608 0.015686 0.015686 0.019608 1 1 0.980392 0.015686 0.015686 0.015686 0.015686 0.996078 1 0.996078

0.015686 0.913726 1 1 0.996078 0.019608 0.019608 0.019608 0.019608 1 1 0.984314 0.015686 0.015686 0.015686 0.015686 0.952941 1 1 0.992157

0.019608 0.913726 1 1 0.988235 0.019608 0.019608 0.019608 0.039216 0.996078 1 0.015686 0.015686 0.015686 0.015686 0.996078 1 1 1 0.007843

0.019608 0.898039 1 1 0.988235 0.019608 0.015686 0.019608 0.968628 0.996078 0.980392 0.027451 0.015686 0.019608 0.980392 0.972549 1 1 1 0.019608

0.043137 0.905882 1 1 1 0.015686 0.035294 0.968628 1 1 0.023529 1 0.792157 0.996078 1 1 0.980392 0.992157 0.039216 0.023529

1 1 1 1 1 0.992157 0.992157 1 1 0.984314 0.015686 0.015686 0.858824 0.996078 1 0.992157 0.501961 0.019608 0.019608 0.023529

0.996078 0.992157 1 1 1 0.933333 0.003922 0.996078 1 0.988235 1 0.992157 1 1 1 0.988235 1 1 1 1

0.015686 0.74902 1 1 0.984314 0.019608 0.019608 0.031373 0.984314 0.023529 0.015686 0.015686 1 1 1 0 0.003922 0.027451 0.980392 1

0.019608 0.023529 1 1 1 0.019608 0.019608 0.564706 0.894118 0.019608 0.015686 0.015686 1 1 1 0.015686 0.015686 0.015686 0.05098 1

0.015686 0.015686 1 1 1 0.047059 0.019608 0.992157 0.007843 0.011765 0.011765 0.015686 1 1 1 0.015686 0.019608 0.996078 0.023529 0.996078

0.019608 0.015686 0.243137 1 1 0.976471 0.035294 1 0.003922 0.011765 0.011765 0.015686 1 1 1 0.988235 0.988235 1 0.003922 0.015686

0.019608 0.019608 0.027451 1 1 0.992157 0.223529 0.662745 0.011765 0.011765 0.011765 0.015686 1 1 1 0.015686 0.023529 0.996078 0.011765 0.011765

0.015686 0.015686 0.011765 1 1 1 1 0.035294 0.011765 0.011765 0.011765 0.015686 1 1 1 0.015686 0.015686 0.964706 0.003922 0.996078

0.007843 0.019608 0.011765 0.054902 1 1 0.988235 0.007843 0.011765 0.011765 0.015686 0.011765 1 1 1 0.015686 0.015686 0.015686 0.023529 1

0.007843 0.007843 0.015686 0.015686 0.960784 1 0.490196 0.015686 0.015686 0.015686 0.007843 0.027451 1 1 1 0.011765 0.011765 0.043137 1 1

0.023529 0.003922 0.007843 0.023529 0.980392 0.976471 0.039216 0.019608 0.007843 0.019608 0.015686 1 1 1 1 1 1 1 1 1

0 1 0

1 -4 1

0 1 0

Input Image Convoluted Image

▪ Inspired by the neurophysiological experiments conducted by Hubel and Wiesel 1962.

Convolutional Layers

• What is Convolution?

Input Image Convolved Image

(Feature Map)

a b c d

e f g h

i j k l

m n o p

w1 w2

w3 w4

Filter

h1 h2

ℎ1 = 𝑓 𝑎 ∗ 𝑤1 + 𝑏 ∗ 𝑤2 + 𝑒 ∗ 𝑤3 + 𝑓 ∗ 𝑤4

ℎ2 = 𝑓 𝑏 ∗ 𝑤1 + 𝑐 ∗ 𝑤2 + 𝑓 ∗ 𝑤3 + 𝑔 ∗ 𝑤4

Number of Parameters for one feature map = 4

Number of Parameters for 100 feature map = 4*100

Lower Level to More Complex Features

▪ In Convolutional neural networks, hidden units are only connected to

local receptive field.

Input Image
Layer 1

Feature Map
Layer 2

Feature Map

w1 w2

w3 w4
w5 w6

w7 w8
Filter 1

Filter 2

Pooling

• Max pooling: reports the maximum output within a

rectangular neighborhood.

• Average pooling: reports the average output of a rectangular

neighborhood.

1 3 5 3

4 2 3 1

3 1 1 3

0 1 0 4

MaxPool with 2X2 filter with

stride of 2

Input Matrix Output Matrix

4 5

3 4

Convolutional Neural Network

6
4

6
4

1
2
8

1
2
8

2
5
6

2
5
6

2
5
6

5
1
2

5
1
2

5
1
2

5
1
2

5
1
2

5
1
2

F
ilt

er

M
ax

 P
o

o
l

Fully Connected

Layers

Feature Extraction Architecture

Living Room

Bed Room

Kitchen

Bathroom

Outdoor

Maxpool

Output

Vector

Convolutional Neural Networks

• Output: Binary, Multinomial, Continuous, Count

• Input: fixed size, can use padding to make all

images same size.

• Architecture: Choice is ad hoc

– requires experimentation.

• Optimization: Backward propagation

– hyper parameters for very deep model can be estimated

properly only if you have billions of images.

• Use an architecture and trained hyper parameters from

other papers (Imagenet or Microsoft/Google APIs etc)

Automatic Colorization of Black and White Images

Optimizing Images

Post Processing Feature Optimization

(Illumination)

Post Processing Feature Optimization

(Color Curves and Details)

Post Processing Feature Optimization

(Color Tone: Warmness)

Recurrent Neural Networks

Why RNN?

The limitations of the Convolutional Neural Networks

• Take fixed length vectors as input and produce fixed

length vectors as output.

• Allow fixed amount of computational steps.

We need to model the data with temporal or sequential

structures and varying length of inputs and outputs

e.g.

This movie is ridiculously good.

This movie is very slow in the beginning but picks up pace

later on and has some great action sequences and comedy

scenes.

Modeling Sequences

A person riding a

motorbike on dirt

road

Awesome tutorial. Positive

Happy

Diwali शभु
दीपावली

Image

Captioning

Sentiment

Analysis

Machine

Translation

What is RNN?

• Recurrent neural networks are connectionist models with the ability

to selectively pass information across sequence steps, while

processing sequential data one element at a time.

• Allows a memory of the previous inputs to persist in the model’s

internal state and influence the outcome.

INPUT

Hidden Layer

OUTPUT

x(t)

Delay

h(t)
h(t)

h(t-1)

RNN (rolled over time)

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1

RNN is awesome

x2

𝑓ℎ()
𝑤ℎ

𝑤𝑥

h2

x3

𝑓ℎ()
𝑤ℎ

𝑤𝑥

h3 𝑓𝑦()
𝑤𝑦

OUTPUT

RNN is awesome

ℎ 𝑡 = 𝑓ℎ 𝑤ℎ ∗ ℎ 𝑡 − 1 + 𝑤𝑥 ∗ 𝑥 𝑡

RNN (rolled over time)

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1

RNN is so

x2

𝑓ℎ()
𝑤ℎ

𝑤𝑥

h2

x3

𝑓ℎ()
𝑤ℎ

𝑤𝑥

h3 𝑓𝑦()
𝑤𝑦

OUTPUTx4

𝑓ℎ()
𝑤ℎ

𝑤𝑥

h4

cool

RNN is so cool

The Vanishing Gradient Problem

• RNN’s use back propagation.

• Back propagation uses chain rule.

– Chain rule multiplies derivatives

• If these derivatives are between 0 and 1 the product

vanishes as the chain gets longer.

– or the product explodes if the derivatives are greater than 1.

• Sigmoid activation function in RNN leads to this

problem.

• Relu, in theory, avoids this problem but not in practice.

Problem with Vanishing or Exploding Gradients

• Don’t allow us to learn long term dependencies.

– Param is a hard worker.

VS.

– Param, student of Yong, is a hard worker.

BAD!!!!

Misguided!!!!

Unacceptable!!!!

Long Short Term Memory (LSTM)

• LSTM provide solution to the vanishing/exploding

gradient problem.

• Solution: Memory Cell, which is updated at each step in

the sequence.

• Three Gates control the flow of information to and from

the Memory cell

– Input Gate: protect the current step from irrelevant inputs

– Output Gate: prevents current step from passing irrelevant

information to later steps.

– Forget Gate: limits information passed from one cell to the next.

LSTM

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1u1

c0 c1+Forget f1

Input i1

𝑐1=𝑓1. 𝑐0+𝑖𝑖. 𝑢1

𝑐𝑡=𝑓𝑡. 𝑐𝑡−1+𝑖𝑡. 𝑢𝑡

LSTM

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1u1

c0 c1+Forget f1

Input i1

x1

h0

𝑤ℎ𝑓

𝑤𝑥𝑓

𝑓𝑓()

Forget f1

𝑓1=𝑓𝑓 𝑊ℎ𝑓 ∗ ℎ0 +𝑊𝑥𝑓 ∗ 𝑥1

𝑓𝑡=𝑓𝑓 𝑊ℎ𝑓 ∗ ℎ𝑡−1 +𝑊𝑥𝑓 ∗ 𝑥𝑡

LSTM

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1u1

c0 c1+Forget f1

Input i1

𝑖1=𝑓𝑖 𝑊ℎ𝑖 ∗ ℎ0 +𝑊𝑥𝑖 ∗ 𝑥1

𝑖𝑡=𝑓𝑓 𝑊ℎ𝑖 ∗ ℎ𝑡−1 +𝑊𝑥𝑖 ∗ 𝑥𝑡

x1

h0

𝑤ℎ𝑖

𝑤𝑥𝑖

𝑓𝑖() Input i1

LSTM

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1u1

c0 c1+Forget f1

Input i1

𝑜𝑡=𝑓𝑜 𝑊ℎ𝑜 ∗ ℎ𝑡−1 +𝑊𝑥𝑜 ∗ 𝑥𝑡

ℎ𝑡=𝑜𝑡. 𝑡𝑎𝑛ℎ 𝑐𝑡

𝑓𝑜()

h1Output o1

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1

LSTM

x1

h0 𝑓ℎ()

𝑤ℎ

𝑤𝑥

u1

c0 c1+Forget

f1

Input

i1

𝑓𝑜()

h1Output

o1

x2

𝑓ℎ()

𝑤ℎ

𝑤𝑥

u2

c2+Forget

f2

Input

i2

𝑓𝑜()

h2Output

o2

Combining CNN and LSTM

Visual Question Answering

Thank you…

Any questions??

التغذيةنموذجلتعبئةQR Codeالسريعةالاستجابةرمزمسحيرجى

.القادمةالمحاضراتلتحسينمهمةملاحظاتكم.المحاضرةحولالراجعة

My google site

	Default Section
	Slide 1
	Slide 2: Performance vs Sample Size
	Slide 3: Supervised Learning
	Slide 4: Deep Learning
	Slide 5: Deep Learning
	Slide 6: Let us see how it all works!
	Slide 7: A Simple Neural Network
	Slide 8: A Simple Neural Network
	Slide 9: Number of Parameters
	Slide 10: If the input is an Image?
	Slide 11: Let us see how convolutional layers help.
	Slide 12: Convolutional Layers
	Slide 13: Convolutional Layers
	Slide 14: Lower Level to More Complex Features
	Slide 15: Pooling
	Slide 16: Convolutional Neural Network
	Slide 17: Convolutional Neural Networks
	Slide 18: Automatic Colorization of Black and White Images
	Slide 19: Optimizing Images
	Slide 20
	Slide 21: Recurrent Neural Networks
	Slide 22: Why RNN?
	Slide 23: Modeling Sequences
	Slide 24: What is RNN?
	Slide 25: RNN (rolled over time)
	Slide 26: RNN (rolled over time)
	Slide 27: The Vanishing Gradient Problem
	Slide 28: Problem with Vanishing or Exploding Gradients
	Slide 29: Long Short Term Memory (LSTM)
	Slide 30: LSTM
	Slide 31: LSTM
	Slide 32: LSTM
	Slide 33: LSTM
	Slide 34: LSTM
	Slide 35: Combining CNN and LSTM
	Slide 36: Visual Question Answering
	Slide 37

