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Supervised Learning

• Traditional pattern recognition models work with hand 

crafted features and relatively simple trainable classifiers.

Limitations

• Very tedious and costly to develop hand crafted features.

• The hand-crafted features are usually highly dependents 

on one application. 
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Deep Learning

• Deep learning has an inbuilt automatic multi stage 

feature learning process that learns rich hierarchical 

representations (i.e. features). 
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Deep Learning

• Image

Pixel        Edge        Texture        Motif         Part        Object

• Text

Character       Word       Word-group        Clause        Sentence        Story

• Each module in Deep Learning transforms its input 

representation into a higher-level one, in a way similar to 

human cortex. 
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Let us see how it all works!



A Simple Neural Network

• An Artificial Neural Network is an information processing 

paradigm that is inspired by the biological nervous systems, such 

as the human brain’s information processing mechanism. 
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A Simple Neural Network
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f( ) is activation function: Relu or sigmoid 
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Number of  Parameters

4*4 + 4 +1 
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If  the input is an Image?

Number of  Parameters

480000*480000 + 480000 +1 = approximately 230 Billion !!!

480000*1000 + 1000 +1 = approximately 480 million !!!
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Let us see how convolutional layers help.



Convolutional Layers

• Filter
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▪ Inspired by the neurophysiological experiments conducted by Hubel and Wiesel 1962.



Convolutional Layers

• What is Convolution?

Input Image Convolved Image

(Feature Map)
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ℎ1 = 𝑓 𝑎 ∗ 𝑤1 + 𝑏 ∗ 𝑤2 + 𝑒 ∗ 𝑤3 + 𝑓 ∗ 𝑤4

ℎ2 = 𝑓 𝑏 ∗ 𝑤1 + 𝑐 ∗ 𝑤2 + 𝑓 ∗ 𝑤3 + 𝑔 ∗ 𝑤4

Number of  Parameters for one feature map = 4

Number of  Parameters for 100 feature map = 4*100



Lower Level to More Complex Features

▪ In Convolutional neural networks, hidden units are only connected to 

local receptive field. 
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Pooling

• Max pooling: reports the maximum output within a 

rectangular neighborhood.

• Average pooling: reports the average output of  a rectangular 

neighborhood.
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Convolutional Neural Network
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Convolutional Neural Networks

• Output: Binary, Multinomial, Continuous, Count

• Input: fixed size, can use padding to make all 

images same size.

• Architecture: Choice is ad hoc

– requires experimentation.

• Optimization: Backward propagation

–  hyper parameters for very deep model can be estimated 

properly only if  you have billions of  images.  

• Use an architecture and trained hyper parameters from 

other papers (Imagenet or Microsoft/Google APIs etc)



Automatic Colorization of  Black and White Images



Optimizing Images

Post Processing Feature Optimization 

(Illumination)

Post Processing Feature Optimization 

(Color Curves and Details)

Post Processing Feature Optimization 

(Color Tone: Warmness)





Recurrent Neural Networks



Why RNN?

The limitations of  the Convolutional Neural Networks

• Take fixed length vectors as input and produce fixed 

length vectors as output.

• Allow fixed amount of  computational steps.

We need to model the data with temporal or sequential 

structures and varying length of  inputs and outputs

e.g.

This movie is ridiculously good.

This movie is very slow in the beginning but picks up pace 

later on and has some great action sequences and comedy 

scenes.



Modeling Sequences
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What is RNN?

• Recurrent neural networks are connectionist models with the ability 

to selectively pass information across sequence steps, while 

processing sequential data one element at a time. 

• Allows a memory of  the previous inputs to persist in the model’s 

internal state and influence the outcome.
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RNN (rolled over time)
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RNN (rolled over time)
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The Vanishing Gradient Problem

• RNN’s use back propagation.

• Back propagation uses chain rule.

– Chain rule multiplies derivatives

• If  these derivatives are between 0 and 1 the product 

vanishes as the chain gets longer.

– or the product explodes if  the derivatives are greater than 1.

• Sigmoid activation function in RNN leads to this 

problem.

• Relu, in theory, avoids this problem but not in practice.



Problem with Vanishing or Exploding Gradients

• Don’t allow us to learn long term dependencies.

– Param is a hard worker. 

VS.

– Param, student of  Yong, is a hard worker.

BAD!!!!

Misguided!!!!

Unacceptable!!!!



Long Short Term Memory (LSTM)

• LSTM provide solution to the vanishing/exploding 

gradient problem.

• Solution: Memory Cell, which is updated at each step in 

the sequence.

• Three Gates control the flow of  information to and from 

the Memory cell

– Input Gate: protect the current step from irrelevant inputs

– Output Gate: prevents current step from passing irrelevant 

information to later steps.

– Forget Gate: limits information passed from one cell to the next.



LSTM
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LSTM
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LSTM
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LSTM
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LSTM
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Combining CNN and LSTM



Visual Question Answering



Thank you…

Any questions??
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