Application Development

Lecture 2
Project Structure and Application Lifecycle

Asst. Lect. Ali Al-khawaja

Class Room

General Lecture Goal

Provide students with an
in-depth understanding
of how a Flutter project is
organized

Behavioral Objectives

By the end of this lecture you will be able to:

o) 02 03

Describe every folder and file Explain the role of main.dart as the Ilustrate the Flutter application

generated by flutter create. starting point of the app. lifecycle from initialization to
termination.

04 05

Differentiate Hot Reload from Hot Restart and know when Apply best practices for organizing large Flutter projects.
to use each.

Lecture contents

Overview of Flutter project Folder architecture explained Deep dive into main.dart
creation

Application lifecycle and key Hot Reload vs. Hot Restart
methods

Creating a Project

On PowerShell write the Command: flutter create my app

2 Windows PowerShell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross—platform PowerShell https://aka.ms/pscoret

PS C:\Users\Ali Saleem> flutter create my appa

Generates a complete starter application with a standard
directory tree and a default counter app.

High-Level Folder Overview

android/ ios/

native Android code & Gradle build files native 10S project & Xcode settings
lib/ test/

all Dart source code, main application logic unit & widget tests

web/ pubspec.yaml

present if web support enabled app metadata, dependencies, and assets

Hidden: .dart_tool/, .1dea/ for IDE configuration

The lib/ Directory

contains all Dart code.

Starts with main.dart but should be organized into subfolders (e.g., models/, views/,
controllers/, services/, widgets/) for scalability.

File Edit Selection View Go Run - Q, first_app

|-—|_'°| EXPLORER % maindart @
1

v FIRST_APP R E O & lib > & maindart > ...
> g .dart_tool 'package:flutter/material.dart’;
idea

u :
r >

> BR android mair?() { .]) Cx
> B build runApp(MaterialApp(home: Center(child: Text("hello world"))));
> W& ios ’
v [lib
% maindart
> W@ linux
> g macos
> B test
> @ web
> = windows

.gitignore

Key Files

pubspec.yaml: pubspec.lock:
| Declares app name, version, dependencies, assets, fonts. I Locks specific dependency versions.
analysis options.yaml: README.md:

| Optional linter rules for consistent code style. l Project documentation for collaborators.

Purpose of main.dart

Contains the main() function, the of every Flutter application.
Example: Q_ first_app
void main() % maindart ®
{ r‘unApp(MyApp()) ; lib > & maindart > ...
} ‘package:flutter/material.dart’;
Run | Debug | Profile
runApp() inflates the widget tree and attaches it to | main() I;

the screen. runApp(MaterialApp(home: Center(child: Text("hello world"))));
}

Root Widget Structure

1 2 3

MyApp usually extends Returns a MaterialApp or Defines , routes, and home
StatelessWidget or StatefulWidget. CupertinoApp. screen.

Application Lifecycle Overview

Inactive/Background

1 2 3 4

Running Termination

Crucial for managing memory, state, and background services.

Initialization Phase

* This 1s the starting phase of the Flutter application lifecycle.

* It begins when the runApp() function 1s executed and the app 1s loaded
into memory.

* During this phase, all essential components are initialized, and the root

widget (usually MyApp) is built for the first time.

void 1itState() {
super.initState();

initializeData(); // Prepare resources before Ul rendering

)

Running Phase

* In this phase, the app 1s fully active and interactive.
* The user can view screens, press buttons, and navigate through pages.
* The Flutter framework continuously rebuilds widgets whenever the state

changes

setState(() {
counter++; // Update Ul dynamically

1)

Inactive / Background Phase

* This occurs when the app 1s temporarily not visible but still in memory — for
example, when the user receives a call, opens another app, or locks the screen.

* Flutter provides the AppLifecycleState to handle these transitions.

(@override
void didChangeAppLifecycleState(AppLifecycleState state) {
if (state == AppLifecycleState.paused) {

saveUserProgress(); / Save data before going to background

h
h

Termination Phase

* This 1s the final phase when the app 1s completely closed by the user or
the operating system. All resources are released, and background services

stop running.

(@override
void dispose() {
controller.dispose(); // Release memory

super.dispose();

b

Key Lifecycle Methods (Stateful Widget)

\a]

4 \

initState() didChangeDependencies()
called once when inserted into widget tree. when dependencies change.

R ¢

build() dispose()

renders UI; may run multiple times. clean up resources (streams, controllers) before removal.

Hot Reload

* Hot Reload 1s a Flutter feature that allows developers to inject
updated source code directly into the running Dart Virtual
Machine (VM) without restarting the entire application.

* When you save your file, Flutter recompiles only the modified
code and updates the app’s Ul instantly, while preserving the
current state of widgets.

Hot Restart

* Hot Restart completely restarts the app from the main()
function, clearing all stored variables and states in memory.

* Unlike Hot Reload, 1t does not preserve the app’s current state.
The entire widget tree 1s rebuilt, reinitializing global variables
and running the app as 1if it were just launched.

Performance & Use Cases

Hot Reload Hot Restart

faster 1teration for Ul tweaks. necessary for structural or state-critical changes.

Key Resources

Flutter official docs: Dart language: Textbook:

https://docs.flutter.dev https://dart.dev Flutter Complete Reference (Alberto
Miola, 2023).

https://docs.flutter.dev
https://dart.dev

My google site

Thank you...

Any questions??

D

Jox Aaal)l Ldadll #3sad il QR Code Al i) e grese (o2
A0l C'_\\).a.a\A.AM u.'.""“;ﬂ ‘\.A@_A (‘;S.\Un;yu E)A\AA]\

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

