
Application Development

Lecture 2

Project Structure and Application Lifecycle

Asst. Lect. Ali Al-khawaja

Class Room

General Lecture Goal

Provide students with an

in-depth understanding

of how a Flutter project is

organized

Behavioral Objectives

By the end of this lecture you will be able to:

01

Describe every folder and file

generated by flutter create.

02

Explain the role of main.dart as the

starting point of the app.

03

Illustrate the Flutter application

lifecycle from initialization to

termination.

04

Differentiate Hot Reload from Hot Restart and know when

to use each.

05

Apply best practices for organizing large Flutter projects.

Lecture contents

Overview of Flutter project
creation

Folder architecture explained Deep dive into main.dart

Application lifecycle and key
methods

Hot Reload vs. Hot Restart

Creating a Project

On PowerShell write the Command: flutter create my_app

Generates a complete starter application with a standard

directory tree and a default counter app.

High-Level Folder Overview

android/

native Android code & Gradle build files

ios/

native iOS project & Xcode settings

lib/

all Dart source code, main application logic

test/

unit & widget tests

web/

present if web support enabled

pubspec.yaml

app metadata, dependencies, and assets

Hidden: .dart_tool/, .idea/ for IDE configuration

The lib/ Directory

Heart of the App: contains all Dart code.

Starts with main.dart but should be organized into subfolders (e.g., models/, views/,

controllers/, services/, widgets/) for scalability.

Key Files

pubspec.yaml:

Declares app name, version, dependencies, assets, fonts.

pubspec.lock:

Locks specific dependency versions.

analysis_options.yaml:

Optional linter rules for consistent code style.

README.md:

Project documentation for collaborators.

Purpose of main.dart

Contains the main() function, the starting point of every Flutter application.

Example:

void main()
{ runApp(MyApp());
}

runApp() inflates the widget tree and attaches it to

 the screen.

Root Widget Structure

MyApp usually extends

StatelessWidget or StatefulWidget.

Returns a MaterialApp or

CupertinoApp.

Defines theme, routes, and home

screen.

Application Lifecycle Overview

1

Initialization

2

Running

3

Inactive/Background

4

Termination

Crucial for managing memory, state, and background services.

Initialization Phase

• This is the starting phase of the Flutter application lifecycle.

• It begins when the runApp() function is executed and the app is loaded

into memory.

• During this phase, all essential components are initialized, and the root

widget (usually MyApp) is built for the first time.

void initState() {

 super.initState();

 initializeData(); // Prepare resources before UI rendering

}

Running Phase

• In this phase, the app is fully active and interactive.

• The user can view screens, press buttons, and navigate through pages.

• The Flutter framework continuously rebuilds widgets whenever the state

changes

setState(() {

 counter++; // Update UI dynamically

});

Inactive / Background Phase

• This occurs when the app is temporarily not visible but still in memory — for

example, when the user receives a call, opens another app, or locks the screen.

• Flutter provides the AppLifecycleState to handle these transitions.

@override

void didChangeAppLifecycleState(AppLifecycleState state) {

 if (state == AppLifecycleState.paused) {

 saveUserProgress(); // Save data before going to background

 }

}

Termination Phase

• This is the final phase when the app is completely closed by the user or

the operating system. All resources are released, and background services

stop running.

@override

void dispose() {

 controller.dispose(); // Release memory

 super.dispose();

}

Key Lifecycle Methods (StatefulWidget)

initState()

called once when inserted into widget tree.

didChangeDependencies()

when dependencies change.

build()

renders UI; may run multiple times.

dispose()

clean up resources (streams, controllers) before removal.

Hot Reload

• Hot Reload is a Flutter feature that allows developers to inject

updated source code directly into the running Dart Virtual

Machine (VM) without restarting the entire application.

• When you save your file, Flutter recompiles only the modified

code and updates the app’s UI instantly, while preserving the

current state of widgets.

Hot Restart

• Hot Restart completely restarts the app from the main()

function, clearing all stored variables and states in memory.

• Unlike Hot Reload, it does not preserve the app’s current state.

The entire widget tree is rebuilt, reinitializing global variables

and running the app as if it were just launched.

Performance & Use Cases

Hot Reload
faster iteration for UI tweaks.

Hot Restart
necessary for structural or state-critical changes.

Key Resources

Flutter official docs:

https://docs.flutter.dev

Dart language:

https://dart.dev

Textbook:

Flutter Complete Reference (Alberto

Miola, 2023).

https://docs.flutter.dev
https://dart.dev

Thank you…

Any questions??

حولالراجعةالتغذيةنموذجلتعبئةQR Codeالسريعةالاستجابةرمزمسحيرجى

.القادمةالمحاضراتلتحسينمهمةملاحظاتكم.المحاضرة

My google site

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

