
Application Development

Lecture 4

Asst. Lect. Ali Al-khawaja

Widgets II : Layouts and Navigation 
in Flutter

Class Room



General Objective

To develop a deep theoretical 

understanding of Flutter layout 

mechanisms (Row, Column, Stack) 

and navigation principles (Navigator 

and Routes).



Behavioural Objectives

Explain the layout constraint 

model and understand the 

layout process within the 

widget tree hierarchy.
Distinguish between single-

child and multi-child widgets 

and their specific use cases.

Interpret layout axes 

(Main/Cross) and alignment 

properties for precise 

positioning.
Analyse the structure of 

navigation using Route, 

Navigator, push/pop, and 

named routes.

Evaluate how layout and 

navigation choices directly 

affect user experience and 

overall design logic.



Lecture Outline

1 Introduction to Layout and Navigation

Understanding the fundamental concepts and their importance in 

Flutter development.

2 The Layout System in Flutter

Exploring the constraint-based layout model and widget tree 

hierarchy.

3 Row, Column, and Stack Widgets

Mastering the core layout widgets for arranging UI elements.

4 Fundamentals of Navigation

Learning Navigator, Routes, and screen management principles.

5 Linking Layout with Navigation

Connecting visual design with user flow and interaction patterns.

6 Summary and Key Insights

Consolidating knowledge and preparing for practical 

implementation.



Why Layout and Navigation?

Layout Defines Appearance
Layout determines how widgets are organised and sized on the 

screen. It establishes visual hierarchy, spacing, and the overall 

aesthetic structure of your application.

Navigation Defines Flow
Navigation defines how users move between screens or pages. It 

creates the logical pathways and transitions that guide users through 

your application's features.

Understanding both concepts theoretically helps you design structured, 

intuitive, and user-friendly applications. The interplay between these two 

elements forms the foundation of exceptional mobile experiences.



Activity 1: Padlet

Scan the QR code to answer the question



The Layout Constraint Model

Parent Provides Constraints
The parent widget passes layout constraints to its child, specifying 

minimum and maximum width and height boundaries.

Child Chooses Size
The child widget selects a size that fits within those constraints, 

respecting the boundaries provided by its parent.

Parent Positions Child

The parent then positions the child within its own coordinate space, 

completing the layout cycle.



Activity 2: Mentimeter

Scan the QR code to answer the question



Single-child vs Multi-child Widgets

Single-child Widgets

Handle only one element at a time. 

These widgets focus on positioning, 

padding, and alignment of individual 

components.

• Center: Centres its child within itself

• Padding: Adds space around its child

• Align: Positions child at specific alignment



Single-child vs Multi-child Widgets

Single-child Widgets

Widget Tree



Single-child vs Multi-child Widgets

Multi-child Widgets

• Row: Horizontal arrangement

• Column: Vertical arrangement

• Stack: Overlapping layers

Handle multiple elements 

simultaneously, defining layout rules 

and arrangement patterns for all 

children.



Single-child vs Multi-child Widgets

Multi-child Widgets

Widget Tree



Row and Column: Axes, Alignment, 

and Flex

Row Widget

Column Widget

Arranges widgets vertically along the main axis (top to bottom).

Important Properties
• mainAxisAlignment: Controls spacing along the primary axis (start, 

centre, spaceBetween, spaceAround, spaceEvenly, end)

• crossAxisAlignment: Controls alignment perpendicular to main axis 

(start, centre, stretch, end)

• Expanded / Flexible: Distribute remaining space proportionally 

amongst children using flex values

Example: If text overflows in a narrow Row, solutions include wrapping 

the text in Flexible, shortening the content, or enabling scrolling 

functionality.

Arranges widgets horizontally along the main axis (left to right or right to left).



Activity 3: Hand-Raising

If you want to place text on top 

of an image, which widget 

would you use and why?



Stack: Overlapping and Design 

Considerations

What is Stack?
Stack arranges widgets on top of each 
other along the Z-axis, creating layers. 

The first child appears at the bottom, 

with subsequent children stacked 

above.

Common Use Cases

• Displaying text overlays on images

• Creating notification badges or 

status indicators

• Building custom buttons with 

complex backgrounds

• Implementing card-based designs 

with overlapping elements

The Positioned Widget

Use Positioned to define exact 

placement of children within 

the Stack using properties like 

top, bottom, left, and right.



Stack: Overlapping and Design 

Considerations (Example)



Activity 4: using Paper & pen

Design Challenge

Grab a piece of paper and sketch a layout that includes:

1 A title at the top

2 An image in the centre

3 A button at the bottom

Then explain: Would you use a Column, Stack, or 

combination (Column + Expanded)? Why is your 

choice the most appropriate solution?



Fundamentals of Navigation

Navigator
Manages a stack of screens (Routes). Think of it as a pile of cards 

where only the top card is visible to the user at any given moment.

push() Method
Adds a new screen to the top of the stack. The new screen slides into 

view, covering the previous screen whilst keeping it in memory.

pop() Method
Removes the current screen and returns to the previous one. The top 

screen slides away, revealing the screen beneath it.

Named Routes
Predefined identifiers for screens that enable cleaner, more 

maintainable navigation. Like street addresses for your app screens.



Navigator.dart file



home_page.dart file



second_page.dart



Activity 5: Group Discussion

Class Division: Groups of 4 Students

Task: Compare Navigator.push() versus Navigator.pushNamed() from a theoretical perspective.

1

Project Organisation

Which approach is more organised in 

large projects with dozens of 

screens?

2

Maintainability

Which method improves code 

maintainability and readability over 

time?

3

Testing and Scalability

How does each method affect testing 

capabilities and application 

scalability?

Discuss within your groups for 8-10 minutes, then we'll share insights with the entire class.



Linking Layout and Navigation

Layout determines interaction points—buttons, 

cards, lists, and gestures—that trigger navigation 

events. These two concepts are deeply interconnected 

in creating seamless user experiences.

Planning Principle

Good navigation planning requires defining route 

relationships before implementation. Map out your 

screens and their connections on paper first.



Activity 6: Classroom Homework

Assignment Requirements

• Write a text-based outline for a Flutter application containing 

three screens: Home, Details, and About.

• For each screen, specify the layout type you would use (Row, 

Column, or Stack) and provide a short theoretical justification 

for your choice.

• Describe five consecutive navigation transitions (push/pop) 

and explain the state of the Navigator stack after each step.

• Write a short essay (8–10 lines) comparing Expanded and 

Flexible from a theoretical perspective — include their roles, 

differences, and when each should be used.



Thank you…

Any questions??

حولالراجعةالتغذيةنموذجلتعبئةQR Codeالسريعةالاستجابةرمزمسحيرجى

.القادمةالمحاضراتلتحسينمهمةملاحظاتكم.المحاضرة

My google site


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

