Application Development

Lecture 4

Widgets 11 : Layouts and Navigation
in Flutter

Asst. Lect. Ali Al-khawaja

Class Room

General Objective

To develop a deep theoretical

-

el

L4

understanding of Flutter layout

Ol

|

mechanisms (Row, Column, Stack)
and navigation principles (Navigator

and Routes).

Behavioural Objectives

/

Explain the layout constraint
model and understand the
layout process within the
widget tree hierarchy.

€

>

.

/

Interpret layout axes
(Main/Cross) and alignment
properties for precise

\positioning.

4

a

Evaluate how layout and
navigation choices directly
affect user experience and
overall design logic.

.

p

Distinguish between single-
child and multi-child widgets
and their specific use cases.

<

\

4

/

Analyse the structure of
navigation using Route,
Navigator, push/pop, and
named routes.

<

a

Lecture Outline

1 Introduction to Layout and Navigation

Understanding the fundamental concepts and their importance in

Flutter development.

3 Row, Column, and Stack Widgets

Mastering the core layout widgets for arranging UI elements.

S Linking Layout with Navigation

Connecting visual design with user flow and interaction patterns.

The Layout System in Flutter

Exploring the constraint-based layout model and widget tree

hierarchy.

Fundamentals of Navigation

Learning Navigator, Routes, and screen management principles.

Summary and Key Insights

Consolidating knowledge and preparing for practical

implementation.

Why Layout and Navigation?

Layout Defines Appearance

Layout determines how widgets are organised and sized on the
screen. It establishes visual hierarchy, spacing, and the overall
aesthetic structure of your application.

Navigation Defines Flow

Navigation defines how users move between screens or pages. It
creates the logical pathways and transitions that guide users through
your application's features.

J

Understanding both concepts theoretically helps you design structured,
intuitive, and user-friendly applications. The interplay between these two
elements forms the foundation of exceptional mobile experiences.

Activity 1: Padlet

Scan the QR code to answer the question

The Layout Constraint Model

- Parent Provides Constraints

The parent widget passes layout constraints to its child, specifying
minimum and maximum width and height boundaries.

- Child Chooses Size

The child widget selects a size that fits within those constraints,
respecting the boundaries provided by its parent.

- Parent Positions Child

The parent then positions the child within its own coordinate space,
completing the layout cycle.

Activity 2: Mentimeter

Scan the QR code to answer the question

Single-child vs Multi-child Widgets

void main() {

runApp (MaterialApp(

Single-child Widgets

. Scaffold(
Handle only one element at a time. body: Center(
. S child: Padding(padding: EdgeInsets.all(20),
These Wldgets focus on pOSlthIllng, child: Align(alignment: Alignment.bottomCenter,

padding, and alignment of individual child: Text('Single-child Example',

style: TextStyle(fontSize: 24, color: Colors.blue),
components.) 1

e Center: Centres its child within itself
« Padding: Adds space around its child

« Align: Positions child at specific alignment

Single-child vs Multi-child Widgets

Single-child Widgets
Widget Tree

MaterialApp
- scaffold
— body: Center
L child: Padding(20)
L child: Align(bottomCenter)
L child: Text("Single-child Example")

Single-child vs Multi-child Widgets

void main() {
runApp(MaterialApp(
Multi_child Widgets home: Scaff :ﬂ(iE
body: Column

mainAxisAlignment: MailnAxisAlignment.center

Handle multiple elements Ch?‘d'f?”:,[.
exXtl" FIPSt chitd:),

simultaneously, defining layout rules | HECnaLd

and arrangement pa‘[tems for all mainAxisAlignment: MainAxisAlignment.center,
children: [

(ﬂlfhjretL Icon(Icons.star, color: Colors.yellow),

"r-,\‘..x_(1 O3 =P D ~sard)
| 2 X1 STAaPrns M|
I S\ - - i AN ¥ ’

* Row: Horizontal arrangement
e Column: Vertical arrangement

« Stack: Overlapping layers

Single-child vs Multi-child Widgets

Multi-child Widgets

Widget Tree

MaterialApp
L scaffold
L~ body: Column (mainAxisAlignment: center)
— Text("First Child")
— Text("Second Child")

l— Row (mainAxisAlignment: center)
F— Icon(star)
L Text("Stars Row")

Row and Column: Axes, Alignment,
and Flex

Row Widget

Arranges widgets horizontally along the main axis (left to right or right to left).

Column Widget

Arranges widgets vertically along the main axis (top to bottom).

Important Properties

 mainAxisAlignment: Controls spacing along the primary axis (start,
centre, spaceBetween, spaceAround, spaceEvenly, end)

* crossAxisAlignment: Controls alignment perpendicular to main axis
(start, centre, stretch, end)

 Expanded / Flexible: Distribute remaining space proportionally
amongst children using flex values

Example: If text overflows in a narrow Row, solutions include wrapping
the text in Flexible, shortening the content, or enabling scrolling
functionality.

Activity 3: Hand-Raising

If you want to place text on top
of an 1mage, which widget
would you use and why?

/
/
/
vd
fil
Al /
l |
Ry

7

.1'1!_1
Y

7
=3 Z

- 7, ..:

e =

Stack: Overlapping and Design

Considerations

What is Stack?

Stack arranges widgets on fop of each
other along the Z-axis, creating layers.
The first child appears at the bottom,
with subsequent children stacked
above.

Common Use Cases
* Displaying text overlays on images

 Creating notification badges or
status indicators

* Building custom buttons with
complex backgrounds

 Implementing card-based designs
with overlapping elements

The Positioned Widget

Use Positioned to define exact
placement of children within
the Stack using properties like
top, bottom, left, and right.

Stack: Overlapping and Design
Considerations (Example)

void main() 4
runApp(MaterialApp(
home: Scaffold(
body: Center(
child: Stack(
children: |
Container(width: , height: , color: Colors.blue),

Positioned(top: 40, left:
child: Icon(Icons.star, color: Colors.white, size: 40),

Activity 4: using Paper & pen

1 Design Challenge

Grab a piece of paper and sketch a layout that includes:

1 A title at the top
2 An image in the centre

3 A button at the bottom

Then explain: Would you use a Column, Stack, or
combination (Column + Expanded)? Why is your
choice the most appropriate solution?

Fundamentals of Navigation

Navigator

Manages a stack of screens (Routes). Think of it as a pile of cards
I where only the top card is visible to the user at any given moment.

push() Method

Adds a new screen to the top of the stack. The new screen slides into
I view, covering the previous screen whilst keeping it in memory.

pop() Method

Removes the current screen and returns to the previous one. The top
I screen slides away, revealing the screen beneath it.

Named Routes

Predefined identifiers for screens that enable cleaner, more
I maintainable navigation. Like street addresses for your app screens.

import 'package:flutter/material.dart’';
import 'home_page.dart';
import 'second_page.dart';

[» void main() {
runApp (const MyApp()):

class MyApp extends StatelessWidget {
const MyApp({super.key}):

Navigator.dart file coverriae

@' Widget build(BuildContext context) {
return MaterialApp(
debugShowCheckedModeBanner: false,

routes: {
'/': (context) => const HomePage(),
'/second': (context) => const SecondPage(),

+
): MaterialApp

import 'package:flutter/material.dart’;

class HomePage extends StatelessWidget {
const HomePage({super.key});

@override
@y Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: const Text("Home Page")),
h()me_page.dart ﬁle body: Center(
child: ElevatedButton(
onPressed: () {
Navigator.pushNamed(context, '/second');
L
child: const Text("Go to Second Page"),
), ElevatedButton

), Center
); Scaffold

import 'package:flutter/material.dart’;

class SecondPage extends StatelessWidget {
const SecondPage({super.key}):

@override
e’ Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: const Text("Second Page")),
second page.dart body: Center(
child: ElevatedButton(
onPressed: () {
Navigator.pop(context);
},
child: const Text("Back"),
), ElevatedButton

), Center
); Scaffold

Activity 5: Group Discussion

Class Division: Groups of 4 Students

‘ Task: Compare Navigator.push() versus Navigator.pushNamed() from a theoretical perspective.

Project Organisation Maintainability Testing and Scalability
Which approach 1s more organised in Which method improves code How does each method affect testing
large projects with dozens of maintainability and readability over capabilities and application

screens? time? scalability?

Discuss within your groups for 8-10 minutes, then we'll share insights with the entire class.

Linking Layout and Navigation

Layout determines interaction points—buttons,
cards, lists, and gestures—that trigger navigation
events. These two concepts are deeply interconnected
In creating seamless user experiences.

Planning Principle

Good navigation planning requires defining route
relationships before implementation. Map out your
screens and their connections on paper first.

Activity 6: Classroom Homework

Assignment Requirements

* Write a text-based outline for a Flutter application containing
three screens: Home, Details, and About.

* For each screen, specify the layout type you would use (Row,
Column, or Stack) and provide a short theoretical justification
for your choice.

* Describe five consecutive navigation transitions (push/pop)
and explain the state of the Navigator stack after each step.

* Write a short essay (8—10 lines) comparing Expanded and
Flexible from a theoretical perspective — include their roles,

differences, and when each should be used.

My google site

Thank you...

Any questions??

D

Jox Aaal)l Ldadll #3sad il QR Code Al i) e grese (o2
A0l C'_\\).a.a\A.AM u.'.""“;ﬂ ‘\.A@_A (‘;S.\Un;yu E)A\AA]\

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

