
Application Development

Lecture 5

Asst. Lect. Ali Al-khawaja

State Management in Flutter

Class Room



Lecture Contents

01

Introduction to State in Flutter

02

Types of State (Ephemeral vs 

Shared)

03

Understanding Stateful and 

Stateless Widgets

04

setState() – Basic Local State 

Management

05

InheritedWidget – Flutter's 

Core Sharing Mechanism

06

Provider – Scalable and Modern 

State Management



General Objective

To provide students with a solid 

theoretical understanding of how 

Flutter manages and updates UI state 

using various mechanisms.



Behavioral Objectives

By the end of this lecture, students should be able to:

1

Define what "state" means in a Flutter application.

2

Distinguish between ephemeral (local) state 
and shared (global) state.

3

Explain how StatefulWidget and State classes 
function together.

4

Describe the purpose and limitations of setState().

5

Explain the mechanism of InheritedWidget as 
a state-sharing tool.

6

Understand the theoretical advantages of 
Provider for scalable apps.



What Is State?
State is any piece of data that can change over time and directly affects how the UI looks.

Examples of state:

• The currently selected tab

• Text in a form field

• Whether a user is logged in

• Items in a cart

• A counter increasing or decreasing

Two categories:

Ephemeral (local) → changes within 
a single widget

Shared (global) → needed across 
different screens



Activity 1 – Padlet

Scan the QR code to answer the question



Ephemeral vs Shared State

Ephemeral (Local) State

• Used within a single widget

• Temporary

• Best handled with setState()

Shared (global) State

• Needed in multiple parts of the app

• Examples: user session, theme, app settings

• Requires a scalable approach like 

InheritedWidget or Provider

Understanding which type of state you're dealing with determines the correct management 

method.



Activity 2 – Mentimeter

Scan the QR code to answer the question



Stateless vs Stateful Widgets

StatelessWidget

• Does NOT store state

• UI does not change after build

• Example: Icons, static text labels

StatefulWidget

• Contains a companion State object

• UI updates when internal data changes

• Used when the interface needs to be dynamic

Important: The state lives in the State class, not in the StatefulWidget itself.



Activity 3 – Hand Raising

Question: "Which widget type should be used for a button 

that changes color when pressed?"



setState(): Local State Management

setState() is Flutter's simplest mechanism to update UI.

How it works:

Update a variable. Call setState() to notify Flutter that 

the UI needs rebuilding.

Flutter rebuilds only the affected 

widget subtree.

Strengths:

• Simple

• Ideal for small components

• Good for local state

Limitations:

• Not suitable for large applications

• Cannot handle shared state

• Leads to "state scattering" if overused



InheritedWidget: Foundation of Shared State

InheritedWidget is Flutter's low-level mechanism for passing data down the widget tree.

Purpose:

• Share state across many widgets without manually passing constructors

• Efficient rebuilds for dependent widgets only

Key Concepts:

Parents provide data
Children "inherit" the data

Rebuilds occur only where 
needed

This is the base mechanism behind Provider and other state libraries.





Provider: Modern Shared State 

Management

Provider builds on InheritedWidget but is easier and 

cleaner.

Why Provider is widely used:

• Simple architecture
• Minimal boilerplate
• Clean separation between UI and logic
• Scalable for large applications
• Officially recommended by Flutter team

Theoretical Workflow:

1. Create a ChangeNotifier class
2. Wrap the app with a Provider
3. Widgets read or listen to updates
4. Only listening widgets rebuild



Activity 5 – Group Discussion

"Why is Provider more suitable than setState() for a real multi-screen application?"



Choosing the Right State Management Approach

Method Best For Scope Complexity

setState Small/local updates Single widget Low

InheritedWidget Custom shared state Multi-widget Medium

Provider Modern & scalable 
shared state

Multi-screen Low–Medium

Note: Choosing the right method prevents future refactoring and improves app design.



Thank you…

Any questions??

حولالراجعةالتغذيةنموذجلتعبئةQR Codeالسريعةالاستجابةرمزمسحيرجى

.القادمةالمحاضراتلتحسينمهمةملاحظاتكم.المحاضرة

My google site


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

