aglall & 1S

College of Sciences

T —
CCeMbuny 0 “

FLRhON

00:
0L ¢ Wuqc.r»jeenma

Application Development

a0 tonils-t
4
ooon
o Locrbertttol: ¢
Lecture 5 SO0 Lace. LCiDt . . Ui -ounatnocht woum)y
i
000" cotrtoctollr ¢ ¢
008" theaetioon. s
?

HT.CHann0s Son

State Management in Flutter

L :
w‘ po, eot rooaionnl (o)

one’ tettteentolok. b CON
e L eeaaittoonn 1
pred L oolns $LO1LRTT)

Asst. Lect. Ali Al-khawaja

Class Room

Lecture Contents

0} 02 03

Introduction to State in Flutter Types of State (Ephemeral vs Understanding Stateful and
Shared) Stateless Widgets

04 05 06

setState() — Basic Local State InheritedWidget — Flutter's Provider — Scalable and Modern

Management Core Sharing Mechanism State Management

General Objective

To provide students with a solid
theoretical understanding of how
Flutter manages and updates UI state

using various mechanisms.

Behavioral Objectives

By the end of this lecture, students should be able to:

Define what "'state' means in a Flutter applicatior Distinguish between ephemeral (local) state
and shared (global) state.

Explain how StatefulWidget and State classes Describe the purpose and limitations of setState().
function together.

Explain the mechanism of InheritedWidget as Understand the theoretical advantages of
a state-sharing tool. Provider for scalable apps.

What Is State?

State 1s any piece of data that can change over time and directly affects how the Ul looks.

Examples of state:

» The currently selected tab

» Textin a form field

 Whether a user is logged 1n

e Items in a cart

* A counter increasing or decreasing

Two categories:

Ephemeral (local) — changes within ~ Shared (global) — needed across
a single widget different screens

Activity 1 — Padlet

o
()
ﬁ
7)]
<P
-
—p
(«P]
-
~
5
z _.
=
(1
()
~
<P}
=
()
)
o
-

@ "”w..“wn__. _.."_. ___ @

Scan the

Ephemeral vs Shared State

Shared (global) State
* Needed 1in multiple parts of the app

« Examples: user session, theme, app settings

* Requires a scalable approach like
InheritedWidget or Provider

Understanding which type of state you're dealing with determines the correct management
method.

Activity 2 — Mentimeter

Scan the QR code to answer the question

55457 2 5]

Stateless vs Stateful Widgets

Stateful Widget

e Does NOT store state « (Contains a companion State object
« UI does not change after build e UI updates when internal data changes
« Example: Icons, static text labels « Used when the interface needs to be dynamic

Important: The state lives in the State class, not in the Stateful Widget itself.

P
@ Activity 3 — Hand Raising

\

Question: "Which widget type should be used for a button

that changes color when pressed?"

setState(): Local State Management

setState() 1s Flutter's simplest mechanism to update UL

How it works:

&7

Update a variable.

Strengths:

 Simple
» Ideal for small components

 Good for local state

:B 5
o/
Call setState() to notify Flutter that Flutter rebuilds only the affected
the Ul needs rebuilding. widget subtree.
Limitations:

Not suitable for large applications
Cannot handle shared state

Leads to "state scattering" 1f overused

InheritedWidget: Foundation of Shared State

InheritedWidget is Flutter's low-level mechanism for passing data down the widget tree.

Purpose:

« Share state across many widgets without manually passing constructors
 Efficient rebuilds for dependent widgets only

Key Concepts:
S
Y
& Rebuilds occur only where
Children "inherit" the data needed

Parents provide data

This 1s the base mechanism behind Provider and other state libraries.

f Child Widget 3

Parent Widget H InheritedWidget (Shared Child Widget 1

1 Child Widget 2

State)

Provider: Modern Shared State
Management

Provider builds on InheritedWidget but 1s easier and
cleaner.

Why Provider is widely used:

« Simple architecture

e Minimal boilerplate

* C(lean separation between Ul and logic

e Scalable for large applications
Officially recommended by Flutter team

Theoretical Workflow:

1. Create a ChangeNotifier class

2. Wrap the app with a Provider

3. Widgets read or listen to updates
4. Only listening widgets rebuild

/

.

Activity S — Group Discussion

"Why 1s Provider more suitable than setState() for a real multi-screen application?"

Choosing the Right State Management Approach

Method Best For Scope Complexity
setState Small/local updates Single widget Low
InheritedWidget Custom shared state Multi-widget Medium
Provider Modern & scalable Multi-screen Low—Medium

shared state

O Note: Choosing the right method prevents future refactoring and improves app design.

My google site

Thank you...

Any questions??

D

Jox Aaal)l Ldadll #3sad il QR Code Al i) e grese (o2
A0l C'_\\).a.a\A.AM u.'.""“;ﬂ ‘\.A@_A (‘;S.\Un;yu E)A\AA]\

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

