Application Development

Lecture 3

Widgets 1

Asst. Lect. Ali Al-khawaja

Class Room

Lecture Contents Table

1 Introduction & Lecture 2
Objectives

4 Stateful Widgets — Concepts & S
Lifecycle

7T Activities (brainstorming, 8

discussion, group tasks, paper &
pen, raise-hand)

Overview of Flutter Widgets

The Widget Tree and Ul
Composition

Summary & Takeaways

Stateless Widgets — Concepts &
Examples

Best Practices for Ul
Composition

Homework Assignment

General & Behavioral Objectives

Provide students with a deep understanding of Flutter's widget
system and the fundamental difference between Stateless and
Stateful widgets, enabling them to design interactive, maintainable
Uls.

Behavioral Objectives:

By the end of this lecture, students will be able to:

1. Define the role of widgets as the core building blocks of Flutter
Uls.

2. Differentiate between Stateless and Stateful widgets in terms of
structure and use cases.

3. Illustrate the hierarchy of a widget tree and explain how
composition creates complex Uls.

4. Analyze Ul requirements and decide whether a widget should be
stateless or stateful.

5. Demonstrate understanding through class activities and group
discussion.

QuickFlow Introduction

Flutter Widget H@yarcarchy

* Flutter apps are entirely composed of widgets—
from the root app to every text label and layout

containetr.

e Understanding widgets is essential for building any

Flutter UI, whether simple or complex.

* Today we focus on the two core widget types—
Stateless and Stateful-—and the way they form a

widget tree that defines the interface.

What is Widgets in Flutter?

* Flutter 1s Google's Ul toolkit for crafting beautiful, natively

compiled 10S and Android apps from a single code base.

* To build any application we start with widgets - The building block
of Flutter applications.

 Widgets describe what their view should look like given their
current configuration and state. It includes a text widget, row

widget, column widget, container widget, and many more.

What are Widgets?

Each element on the screen of the

Flutter app 1s a wic

get. The view

of the screen completely depends

upon the choice and sequence of

the widgets used to build the apps.

The structure of the code of apps

1s a tree of widgets.

Listening Activity

Category of Widgets

There are mainly 14 categories into which the flutter widgets are divided. They are

mainly segregated on the basis of the functionality they provide in a flutter

application.

*» Design systems

*» Base widgets

Design systems

Widgets
Cupertino

Material

Components

Description

These are the iI0S-designed widgets.

This is a set of widgets that mainly follow the
material design by Google.

Base Widgets

Base Widgets

Accessibility

Accessibility widgets ensure that your app is usable
for everyone, providing essential features for users
with disabilities.

Animation & Motion

Animation and motion widgets create dynamic visual
experiences, enhancing user engagement through
transitions and animated elements.

Assets, Images & Icons

This category includes widgets for managing visual
assets, enabling the effective display of images and
icons within your application.

Async

Async widgets handle asynchronous tasks seamlessly,
allowing your app to perform multiple operations
without blocking the user interface.

Basics

Basic widgets form the foundational elements of
Flutter applications, including buttons, text fields, and
containers essential for UI design.

Input

Input widgets facilitate user interaction, capturing
data through elements like text fields, checkboxes,
and dropdown menus in a user-friendly manner.

Base Widgets

Interaction Models

Interaction models enable effective user engagement
by managing gestures and navigation within the app
environment for smooth experiences.

Animation & Motion

Animation and motion widgets enhance user
experience by adding dynamic transitions and effects
that bring the application to life.

Scrolling

Scrolling widgets facilitate the presentation of
extensive content by enabling users to smoothly
navigate through long lists or views.

Layout

The layout widget organizes the placement of child
widgets, ensuring a structured and responsive design
across different screen sizes.

Painting & Effects

Painting and effects widgets apply visual changes,
allowing developers to implement custom graphics
and enhance the overall app aesthetics.

Styling

Styling widgets manage themes, colors, and
typography, ensuring a cohesive and visually
appealing interface tailored to user preferences.

Enhancing App Accessibility

Screen Readers Text Scaling Contrast Modes
Facilitates navigation for visually Adapts text size for better readability. Improves visibility with adjustable
impaired users. color contrasts.

.

HIGH CONTRAST

I-MODE

Animation and Motion Widgets

Hero AnimatedContainer AnimatedOpacity

Enables smooth transitions between Creates animated changes based on Adjusts the transparency of widgets
screens and elements. properties over time. dynamically and smoothly.

Managing Visual Elements in Flutter

Images Icons Assetimage
Display images seamlessly in your Use icons to enhance user Load images from assets for
app. navigation. efficiency.

53 & B8 & &
D B ® B < o
O ®@® B & ¥ &
® ® ©®© B O
@ B & © B
© 8 & B ¢ ®

Understanding Async Widgets

FutureBuilder

Handles asynchronous data,
providing a flexible UI.

|
LOATA : \,’247
y

StreamBuilder

Updates Ul in real-time as data
streams.

AsyncSnapshot

Represents the state of
asynchronous operations.

Essential Base Widgets in Flutter

Container Row Column
The Container widget is crucial for Use the Row widget for horizontal The Column widget organizes
layout. alignment. children vertically.

C_J

Essential Input Widgets

TextField Checkbox Radio
A TextField allows users to enter text A Checkbox enables users to make The Radio widget presents mutually
data. binary choices. exclusive options.

e’

» *°

e

Interaction Models in Flutter

GestureDetector InkWell Navigator
Detects gestures like taps or swipes. Creates a ripple effect on touch. Manages app navigation between
screens.

A
<>

Exploring Layout Widgets

Stack Align Expanded
The Stack widget allows overlapping Align positions widgets accordingto =~ The Expanded widget stretches
elements easily. specified coordinates. children to fill space.

“
J

Understanding Painting & Effects Widgets

Opacity ClipRRect DecoratedBox

Adjusts the transparency of a widget. Clips the child widget to a rounded Adds visual decoration to a box
rectangle. widget.

Understanding Scrolling Widgets

ListView SingleChildScrollView GridView

A scrollable list displaying multiple Enables scrolling for a single widget, Arranges multiple items in a grid
items efficiently. enhancing usability. layout for accessibility.

Understanding Styling Widgets

Theme MediaQuery SizedBox

Theme widget provides consistent MediaQuery allows responsive SizedBox is used for adding spacing
styling across the app. design based on screen size. between elements.

Exploring Text Widgets in Flutter

Text RichText DefaultTextStyle
Displays simple strings, fundamental Allows complex text formatting, Defines default styling for text
for presenting content. integrating multiple styles easily. widgets in the hierarchy.

-2

Activity 1 — Brainstorming

"List as many Ul elements as you can that

could be represented as widgets in a mobile

application. "

Core Widget Types

There are broadly two types of widgets 1n the flutter:

‘»Stateless Widget

*»Stateful Widget

Recanss

Stateless Widgets

» Stateless Widget 1s a type of widget which once built , then it's properties and state can't be
changed. These widgets are immutable, once created can't be modified.

* These are used for static content or UI content that don't need a change after time.

* Key Characterstics of Stateless Widgets are: Immutable , No State and Lightweight.

* Examples: Display Text, Icons, Images, etc.

Stateless Widget Example

- SEEXEE

import 'package:flutter/material.dart’; My First Flutter App

void main() {

runApp (MyApp());
}

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(Hello World
home: Scaffold(
appBar: AppBar(title: Text('My First Flutter App')),
body: Center(
child: Text('Hello World',style: TextStyle(fontSize: 28)),

)s
)s
)5
}

Expanded Stateless Examples

Product Descriptions Design Elements Performance Benefits

Display static product descriptions. Constant design elements like headers, Efficient because Flutter skips
logos, or background graphics. unnecessary rebuilds.

Stateful Widgets

» Stateful Widgets is a type of widget that can change state. It can maintain and
update the appearance 1n the response to change 1n state.

* These are used for dynamic change in the properties and appearance over the
time.

* Key Characterstics of Stateful Widgets are: Mutable State , State Lifecycle
and Dynamic Updates.

 Examples: Buttons, Sliders, Text Fields, etc.

Stateful Widget Example

class Counter extends StatefulWidget {
@override
_CounterState createState() => _CounterState();

¥

class CounterState extends State<Counter> {
int count = ©;
@override
Widget build(BuildContext context) {
return Text('Count: $count');

}
}

Stateful Widget State

defines configuration holds mutable data and the build() method

Stateful Lifecycle Methods

initState() setState()
initialise data/resources request UI rebuild when state changes
didChangeDependencies() dispose()

respond to changes in inherited widgets clean up resources

e = Activity 3 — Class Discussion

"Why must the Ul update immediately
when user interaction occurs, and how

does setState() enable this?"

Comparing Stateless & Stateful

Feature Stateful

Data Changes No Yes

Rebuild Trigger Parent change only setState / external triggers
Complexity Simple More complex, needs State object

Performance Very fast Slight overhead

When to Choose Which
Use Stateless when: Use Stateful when:

UI depends solely on final parameters. Ul depends on dynamic data, animations, or user input.

Today's Upcoming
Priorities Deadlines

Start) View it Explore
Workout History ' Challenges

Activity 4 — Raise-Hand Quick Quiz

Question:

"Would a login form with live
validation be Stateless or Stateful?

Why?"

Widget Tree Fundamentals

2 Hierarchical Structure

Widgets are arranged 1n a hierarchical tree.

+ Root Widget
The root widget is typically Material App or CupertinoApp.

Q Composition

Each child widget can contain its own children, forming
complex Uls through composition.

DesignlLa
2077

Activity 5 — Group Work

Groups of 4-5:
Design a widget tree for a simple "Profile Page" that includes a profile

1umage, name, and [ist of settings. Identify which nodes are Stateless and

which should be Stateful.

=

User
Dashboard

Advanced Composition Example @ T e

User Manme

Demonstration of a screen built from multiple
User Mame

custom widgets (Header, UserList, Footer) to show

modular design and readability.

User Manme

2
n -
ﬁ

)
© Add User
Home Settings Support
L ———— o —}

Activity 7 — Homework (Google Classroom)

Task:

1. Create a small Flutter UI demonstrating one Stateless and one Stateful widget.
2. Explain in ~150 words when each widget is appropriate and how they interact in the widget tree.

My google site

Thank you...

Any questions??

D

Jox Aaal)l Ldadll #3sad il QR Code Al i) e grese (o2
A0l C'_\\).a.a\A.AM u.'.""“;ﬂ ‘\.A@_A (‘;S.\Un;yu E)A\AA]\

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

