
Application Development

Lecture 3

Asst. Lect. Ali Al-khawaja

Class Room

Widgets I

Lecture Contents Table

1 Introduction & Lecture

Objectives

2 Overview of Flutter Widgets 3 Stateless Widgets – Concepts &

Examples

4 Stateful Widgets – Concepts &

Lifecycle

5 The Widget Tree and UI

Composition

6 Best Practices for UI

Composition

7 Activities (brainstorming,

discussion, group tasks, paper &

pen, raise-hand)

8 Summary & Takeaways 9 Homework Assignment

General & Behavioral Objectives

General Goal:

Provide students with a deep understanding of Flutter's widget

system and the fundamental difference between Stateless and

Stateful widgets, enabling them to design interactive, maintainable

UIs.

Behavioral Objectives:

By the end of this lecture, students will be able to:

1. Define the role of widgets as the core building blocks of Flutter

UIs.

2. Differentiate between Stateless and Stateful widgets in terms of

structure and use cases.

3. Illustrate the hierarchy of a widget tree and explain how

composition creates complex UIs.

4. Analyze UI requirements and decide whether a widget should be

stateless or stateful.

5. Demonstrate understanding through class activities and group

discussion.

Introduction

• Flutter apps are entirely composed of widgets—

from the root app to every text label and layout

container.

• Understanding widgets is essential for building any

Flutter UI, whether simple or complex.

• Today we focus on the two core widget types—

Stateless and Stateful—and the way they form a

widget tree that defines the interface.

What is Widgets in Flutter?

• Flutter is Google's UI toolkit for crafting beautiful, natively

compiled iOS and Android apps from a single code base.

• To build any application we start with widgets - The building block

of Flutter applications.

• Widgets describe what their view should look like given their

current configuration and state. It includes a text widget, row

widget, column widget, container widget, and many more.

What are Widgets?

Each element on the screen of the

Flutter app is a widget. The view

of the screen completely depends

upon the choice and sequence of

the widgets used to build the apps.

The structure of the code of apps

is a tree of widgets.

Category of Widgets

There are mainly 14 categories into which the flutter widgets are divided. They are

mainly segregated on the basis of the functionality they provide in a flutter

application.

❖ Design systems

❖ Base widgets

Design systems

Base Widgets

Base Widgets

This category includes widgets for managing visual

assets, enabling the effective display of images and

icons within your application.

Assets, Images & Icons

Animation and motion widgets create dynamic visual

experiences, enhancing user engagement through

transitions and animated elements.

Animation & Motion

Accessibility widgets ensure that your app is usable

for everyone, providing essential features for users

with disabilities.

Accessibility

Input widgets facilitate user interaction, capturing

data through elements like text fields, checkboxes,

and dropdown menus in a user-friendly manner.

Input

Basic widgets form the foundational elements of

Flutter applications, including buttons, text fields, and

containers essential for UI design.

Basics

Async widgets handle asynchronous tasks seamlessly,

allowing your app to perform multiple operations

without blocking the user interface.

Async

Base Widgets

Scrolling widgets facilitate the presentation of

extensive content by enabling users to smoothly

navigate through long lists or views.

Scrolling

Animation and motion widgets enhance user

experience by adding dynamic transitions and effects

that bring the application to life.

Animation & Motion

Interaction models enable effective user engagement

by managing gestures and navigation within the app

environment for smooth experiences.

Interaction Models

Styling widgets manage themes, colors, and

typography, ensuring a cohesive and visually

appealing interface tailored to user preferences.

Styling

Painting and effects widgets apply visual changes,

allowing developers to implement custom graphics

and enhance the overall app aesthetics.

Painting & Effects

The layout widget organizes the placement of child

widgets, ensuring a structured and responsive design

across different screen sizes.

Layout

Screen Readers

Facilitates navigation for visually
impaired users.

Text Scaling

Adapts text size for better readability.

Contrast Modes

Improves visibility with adjustable
color contrasts.

Enhancing App Accessibility

Hero

Enables smooth transitions between
screens and elements.

AnimatedContainer

Creates animated changes based on
properties over time.

AnimatedOpacity

Adjusts the transparency of widgets
dynamically and smoothly.

Animation and Motion Widgets

Images

Display images seamlessly in your
app.

Icons

Use icons to enhance user
navigation.

AssetImage

Load images from assets for
efficiency.

Managing Visual Elements in Flutter

FutureBuilder

Handles asynchronous data,
providing a flexible UI.

StreamBuilder

Updates UI in real-time as data
streams.

AsyncSnapshot

Represents the state of
asynchronous operations.

Understanding Async Widgets

Container

The Container widget is crucial for
layout.

Row

Use the Row widget for horizontal
alignment.

Column

The Column widget organizes
children vertically.

Essential Base Widgets in Flutter

TextField

A TextField allows users to enter text
data.

Checkbox

A Checkbox enables users to make
binary choices.

Radio

The Radio widget presents mutually
exclusive options.

Essential Input Widgets

GestureDetector

Detects gestures like taps or swipes.

InkWell

Creates a ripple effect on touch.

Navigator

Manages app navigation between
screens.

Interaction Models in Flutter

Stack

The Stack widget allows overlapping
elements easily.

Align

Align positions widgets according to
specified coordinates.

Expanded

The Expanded widget stretches
children to fill space.

Exploring Layout Widgets

Opacity

Adjusts the transparency of a widget.

ClipRRect

Clips the child widget to a rounded
rectangle.

DecoratedBox

Adds visual decoration to a box
widget.

Understanding Painting & Effects Widgets

ListView

A scrollable list displaying multiple
items efficiently.

SingleChildScrollView

Enables scrolling for a single widget,
enhancing usability.

GridView

Arranges multiple items in a grid
layout for accessibility.

Understanding Scrolling Widgets

Theme

Theme widget provides consistent
styling across the app.

MediaQuery

MediaQuery allows responsive
design based on screen size.

SizedBox

SizedBox is used for adding spacing
between elements.

Understanding Styling Widgets

Text

Displays simple strings, fundamental
for presenting content.

RichText

Allows complex text formatting,
integrating multiple styles easily.

DefaultTextStyle

Defines default styling for text
widgets in the hierarchy.

Exploring Text Widgets in Flutter

Activity 1 – Brainstorming

"List as many UI elements as you can that

could be represented as widgets in a mobile

application."

Core Widget Types

There are broadly two types of widgets in the flutter:

❖Stateless Widget

❖Stateful Widget

Stateless Widgets

• Stateless Widget is a type of widget which once built , then it's properties and state can't be

changed. These widgets are immutable, once created can't be modified.

• These are used for static content or UI content that don't need a change after time.

• Examples: Display Text, Icons, Images, etc.

• Key Characterstics of Stateless Widgets are: Immutable , No State and Lightweight.

Stateless Widget Example

import 'package:flutter/material.dart';

void main() {

 runApp(MyApp());

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(title: Text('My First Flutter App')),

 body: Center(

 child: Text('Hello World',style: TextStyle(fontSize: 28)),

),

),

);

 }

}

Expanded Stateless Examples

Product Descriptions
Display static product descriptions.

Design Elements
Constant design elements like headers,

logos, or background graphics.

Performance Benefits
Efficient because Flutter skips

unnecessary rebuilds.

Stateful Widgets

• Stateful Widgets is a type of widget that can change state. It can maintain and

update the appearance in the response to change in state.

• These are used for dynamic change in the properties and appearance over the

time.

• Examples: Buttons, Sliders, Text Fields, etc.

• Key Characterstics of Stateful Widgets are: Mutable State , State Lifecycle

and Dynamic Updates.

Stateful Widget Example

class Counter extends StatefulWidget {
 @override
 _CounterState createState() => _CounterState();
}

class _CounterState extends State<Counter> {
 int count = 0;
 @override
 Widget build(BuildContext context) {
 return Text('Count: $count');
 }
}

StatefulWidget
defines configuration

State
holds mutable data and the build() method

Stateful Lifecycle Methods

initState()

initialise data/resources

setState()

request UI rebuild when state changes

didChangeDependencies()

respond to changes in inherited widgets

dispose()

clean up resources

Activity 3 – Class Discussion

"Why must the UI update immediately

when user interaction occurs, and how

does setState() enable this?"

Comparing Stateless & Stateful

Feature Stateless Stateful

Data Changes No Yes

Rebuild Trigger Parent change only setState / external triggers

Complexity Simple More complex, needs State object

Performance Very fast Slight overhead

When to Choose Which

Use Stateless when:

UI depends solely on final parameters.

Use Stateful when:

UI depends on dynamic data, animations, or user input.

Activity 4 – Raise-Hand Quick Quiz

Question:

"Would a login form with live

validation be Stateless or Stateful?

Why?"

Widget Tree Fundamentals

Hierarchical Structure

Widgets are arranged in a hierarchical tree.

Root Widget

The root widget is typically MaterialApp or CupertinoApp.

Composition

Each child widget can contain its own children, forming

complex UIs through composition.

Activity 5 – Group Work

Groups of 4–5:

Design a widget tree for a simple "Profile Page" that includes a profile

image, name, and list of settings. Identify which nodes are Stateless and

which should be Stateful.

Advanced Composition Example

Demonstration of a screen built from multiple

custom widgets (Header, UserList, Footer) to show

modular design and readability.

Activity 7 – Homework (Google Classroom)

Task:

1. Create a small Flutter UI demonstrating one Stateless and one Stateful widget.

2. Explain in ~150 words when each widget is appropriate and how they interact in the widget tree.

Thank you…

Any questions??

حولالراجعةالتغذيةنموذجلتعبئةQR Codeالسريعةالاستجابةرمزمسحيرجى

.القادمةالمحاضراتلتحسينمهمةملاحظاتكم.المحاضرة

My google site

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

