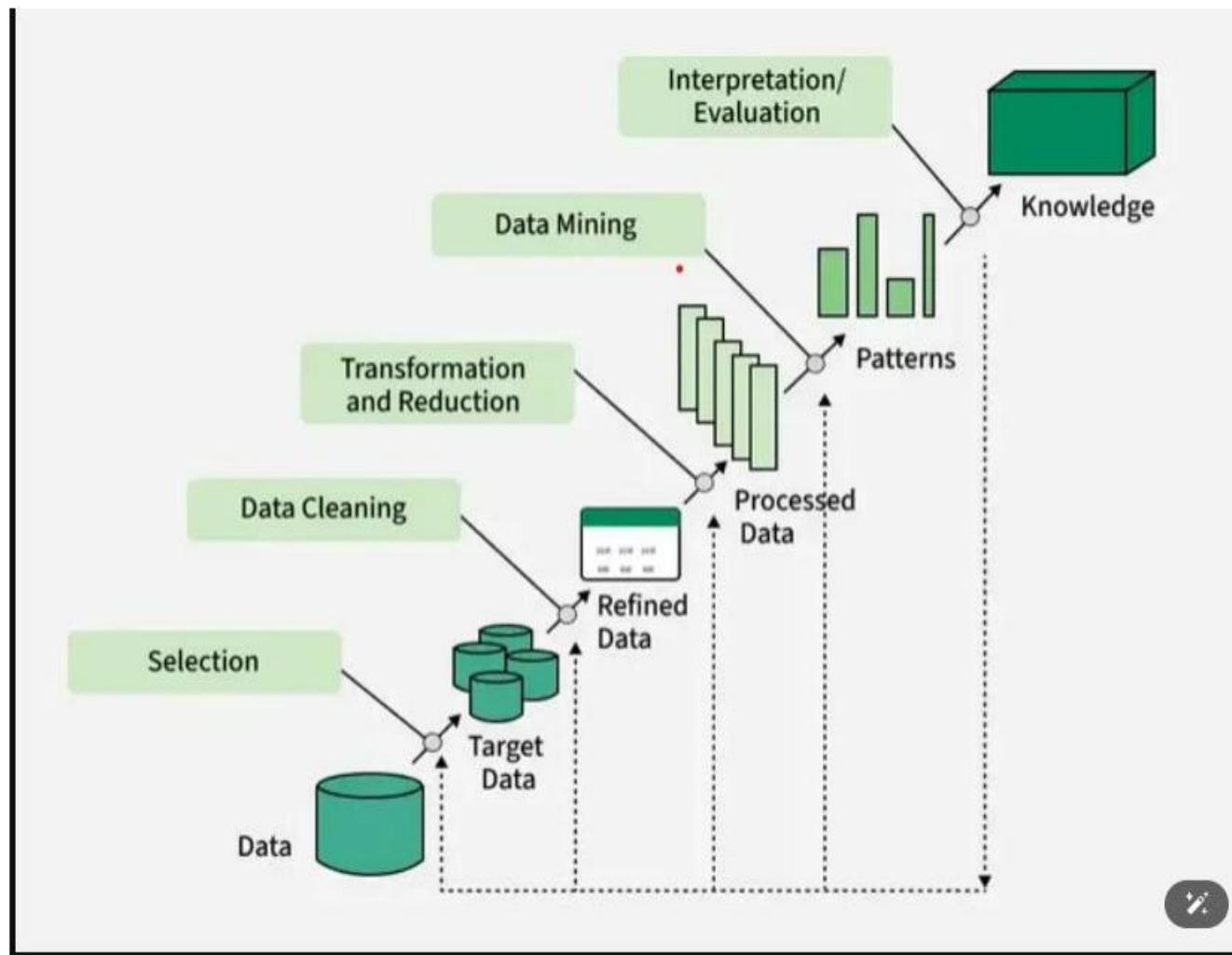




# Clinical Data Mining


## Lecture Five

By

*Assist. Lect. Zainab M. Alameen*

2025 - 2026

## Diagram 1: key step in the Knowledge Discovery in Databases (KDD) process:



# Transformation & Feature Selection:

## Lecture Keys:

- ▶ Introduction.
- ▶ Data Transformation.
- ▶ Feature Selection.
- ▶ Feature Extraction.
- ▶ Why Dimensionality Reduction Matters in Healthcare.
- ▶ Discussion.

# Introduction:

- ▶ Clinical datasets are often **high-dimensional**, meaning they contain many attributes (features), such as lab results, demographics, genetic data, or imaging biomarkers.

Too many features can cause:

- Increased computation time
- Model over fitting
- Difficulty in interpretation

- ▶ Thus, we use **data transformation** and **feature selection/extraction** to simplify data while keeping important information.

# Data Transformation:

- ▶ **Transformation:** The process of converting data from one format or scale to another to improve model performance or compatibility.

## ➤ **Common Transformation Techniques:**

| Transformation           | Description                      | Example                           |
|--------------------------|----------------------------------|-----------------------------------|
| Normalization            | Scale data between 0-1           | Glucose levels scaled between 0-1 |
| Standardization          | Mean = 0, SD = 1                 | Z-score transformation            |
| Log Transformation       | Reduces skewness in large ranges | Log (Blood_Pressure)              |
| Binning / Discretization | Converts numeric to categorical  | Glucose → Low/Medium/High         |
| Encoding                 | Converts text to numeric         | Gender → (Male=0, Female=1)       |

## Feature Selection:

- ▶ **Feature Selection:** Selecting the **most relevant** features from the dataset that have the highest impact on prediction or classification tasks.
- ▶ **Example:**

When predicting heart disease, selecting only key features like *Age*, *Cholesterol*, *Blood Pressure*, and *Smoking History* may improve accuracy and interpretability.

# Feature Selection:

## ► **Main Types:**

### **1. Filter Methods:**

- Use statistical measures like *correlation*, *ANOVA*, or *chi-square test*.
- Example: Remove highly correlated lab tests.

### **2. Wrapper Methods:**

- Evaluate subsets of features using model performance (e.g., Recursive Feature Elimination – RFE).
- Example: Select top biomarkers that best predict diabetes.

### **3. Embedded Methods:**

- Feature selection happens during model training (e.g., LASSO regression, Decision Tree feature importance).

# Feature Extraction (Dimensionality Reduction):

► **Feature Extraction:** is transforms the original features into a new set of features that summarize the most important information.

► **Techniques:**

**A. Principal Component Analysis (PCA):** Converts correlated features into a smaller set of uncorrelated components and keeps most variance in fewer dimensions.

► **Example:**

From 20 lab test results → reduce to 3 main components representing:

- Liver Function
- Kidney Function
- Blood Cell Activity

**B. Linear Discriminant Analysis (LDA):** Used for **classification** tasks (supervised) and maximizes separation between disease groups (e.g., healthy vs. diabetic).

**C. Auto encoders (Deep Learning-based):** Neural networks that compress and reconstruct data, useful in imaging or genomic datasets.

# Why Dimensionality Reduction Matters in Healthcare

| Benefit                   | Explanation                                         |
|---------------------------|-----------------------------------------------------|
| Reduces noise             | Eliminates irrelevant or redundant medical features |
| Improves speed            | Faster training and prediction                      |
| Prevents overfitting      | Simpler models generalize better                    |
| Improves visualization    | Allows plotting complex data in 2D/3D               |
| Enhances interpretability | Focus on clinically meaningful indicators           |

# *Discussion*

- ▶ **Dataset:** Clinical records of diabetic patients with 20 lab tests.

**Goal:** Predict risk of kidney failure.

**Steps:**

1. Apply **feature selection** to keep only relevant lab tests (e.g., Creatinine, Glucose, GFR).
2. Apply **PCA** to reduce them to 2 main components.
3. Visualize patient clusters — healthy vs risk group.

*The End*

*Thanks for your*

*listening*