Hoom Copode Potuave Fodireg Puie Lean More

:% Flutter

Mobiile App Deviome
Devoipment Werkauns

Gesertinges et inhdsOes Mbenes, Asouint ou Feutaky,

Application Development

Lecture 1
Introduction to Flutter & Cross-Platform
App Development

E for Development Rapid Prototyping Hot Reloading
Asst. Lect. Ali Al-khawaja
Documentation Community Pricing

Class Room

Welcome & Course Context

Warm Welcome

Welcome to Application Development. This course will transform
how you think about mobile development, teaching you to create
powerful apps that work seamlessly across multiple platforms.

Purpose of Today

We'll introduce the course structure, explain its critical importance in
today's mobile-driven world, and provide a detailed understanding of
cross-platform development principles that will guide your learning
journey.

Big Picture Vision

By course completion, you'll master how a single Dart codebase can
create high-quality apps for Android, 10S, Web, and Desktop—
revolutionising your development workflow and career prospects.

General Course Objective

Mobile App
interface

To equip students with the theoretical knowledge and practical skills to
design, develop, and deploy cross-platform mobile applications using
the Flutter framework and Dart programming language, whilst
strengthening problem-solving abilities, teamwork, and professional
software-engineering practices.

This comprehensive objective encompasses both technical mastery and
professional development skills essential for modern software engineering
careers. You'll learn to think systematically about application architecture
whilst developing the collaborative skills valued by industry employers.

Why This Course Matters

Market Reality

Companies need fast, cost-
effective delivery on multiple
platforms. The ability to develop
once and deploy everywhere has
become a competitive advantage
that employers actively seek in
new graduates.

Career Edge

User Experience

Consistent ~ UI/UX across
devices is no longer optional—
it's expected. Users demand
seamless experiences whether
they're on Android, 10S, or web
platforms.

Skills in Flutter and Dart are highly valued by employers and essential for

start-up product development. This course positions you at the forefront of

modern app development.

Learning Outcomes for This Lecture

By the end of this lecture, you will demonstrate mastery of fundamental cross-
Hello worlld platform development concepts and be prepared to begin hands-on Flutter
fasew) development.

Cross-Platform Understanding

Explain cross-platform development and its technical motivations,
including performance trade-offs and business benefits.

Flutter Architecture

Describe Flutter's architecture and its major components, understanding
how they work together to deliver native-like performance.

Environment Setup

List and sequence the steps to set up the Flutter environment, ensuring
you're prepared for upcoming practical sessions.

Active Participation

Participate effectively in all class activities within a blended-learning
model, developing collaboration skills essential for software development
teams.

Lecture Contents

Introduction to Cross-Platform Development

Foundation concepts and industry context

Flutter Architecture

Deep dive into technical components

Development Tools & Environment Setup
Practical preparation for development

Interactive Theory-Based Activities

Collaborative learning and concept reinforcement

3 SN U AW N

Flutter Overview & Advantages
Why Flutter leads the cross-platform revolution

Dart Language Primer
Essential language features and concepts

First Flutter Project Walkthrough

Hands-on project creation and exploration

Concept of Cross-Platform

Development

Definition

one unified codebase.

Philosophy
""Write once, deploy everywhere."

This paradigm shift revolutionises
traditional development approaches,
eliminating the need to maintain
separate codebases for different
platforms whilst preserving native-
like performance and user
experience.

Build a single application capable of running on multiple
operating systems—Android, 10S, Web, Desktop—using

Primary Goal

Faster delivery cycles

* Reduced development costs
» Consistent user experience
e Simplified maintenance

Why Businesses Need Cross-
Platform Apps

O

:6)—)

Rapid Release Cycles

Achieve shorter time-to-market by eliminating duplicate development
efforts. Deploy updates simultaneously across all platforms,
maintaining competitive advantage.

Consistent Ul

Deliver unified user experiences across diverse devices and operating
systems. Brand consistency strengthens user recognition and
satisfaction.

Lower Maintenance

Avoid the complexity and cost of maintaining two separate native
codebases. Bug fixes and feature updates require half the development
effort.

These advantages translate directly into reduced development costs, faster market
entry, and improved resource allocation—critical factors for both established
companies and start-ups competing in today's fast-paced digital marketplace.

Native vs. Cross-Platform Development

Aspect Native Development Cross-Platform Development
Codebase Separate code for Android & 10S Single shared codebase
Performance Highest possible performance Near-native performance
Development Cost Longer development & higher cost ~ Faster, more cost-efficient
Maintenance Duplicate effort required Unified maintenance approach
Time to Market Slower due to parallel development Significantly faster deployment

) Key Insight: Flutter narrows the performance gap whilst preserving speed and cost advantages. Modern cross-platform
frameworks achieve 95%+ native performance for most use cases.

Major Frameworks Overview

®

Flutter (Google)

Focus of this course. Dart-based framework with exceptional
performance and rich widget library. Compiles to native machine code.

React Native (Meta)

JavaScript-based framework leveraging React concepts. Strong
community support but performance limitations compared to Flutter.

Xamarin (.NET)

Microsoft's C#-based solution. Excellent for enterprises already invested
in .NET ecosystem but more complex setup.

Ionic & Kotlin Multiplatform

Web-based (Ionic) and Kotlin-based solutions offering different
approaches to cross-platform challenges with varying trade-offs.

Activity 1 — Brainstorming (5 minutes)

"List the biggest challenges developers face when creating apps for
multiple platforms."

What Is Flutter?

Definition and Origin

An open-source Ul framework
launched by Google in 2017, aiming to
revolutionize the way beautiful and
custom-designed native applications
(Natively Compiled) are built for
mobile, web, and desktop, all from a
single codebase.

Comprehensive and
Integrated Scope

Flutter enables you to build
applications for Android, 10S,
web, and desktop platforms from a
single Dart codebase. This
eliminates the complexities
associated with platform-specific
development while maintaining
native performance standards.

Programming Model

 Declarative: Defines how the user
interface should look, not how it is
drawn.

* Widget-based: Every element in
Flutter 1s a composable widget.

* Reactive: The Ul automatically
updates with data changes to
provide a seamless experience.

Key Competitive Advantage

Unlike other frameworks that
rely on web views or platform-
specific native components,
Flutter renders directly to the
screen using its high-
performance rendering engine,
ensuring exceptional speed and
performance.

Key Advantages of Flutter

Single Codebase

Write once, run everywhere. Eliminate duplicate development efforts whilst
maintaining platform-specific optimisations and native integrations where
needed.

Hot Reload & Hot Restart

Instantly reflect UI changes during development. See code modifications in
milliseconds, dramatically accelerating the development and debugging
process.

Native-Like Performance

Compiles to ARM machine code, delivering 60fps animations and smooth user
interactions that rival native applications in performance benchmarks.

Codeflow

Rich Widget Library

Material and Cupertino widgets for beautiful interfaces. Extensive
customisation options enable unique designs whilst maintaining platform
conventions.

¢

Flutter Engine

Flutter Architecture Overview

Flutter is built on a set of integrated layers that work together to
provide high performance and a flexible, seamless development
experience.

Flutter Engine

High-performance rendering and graphics powered by Skia. Written
in C++ for optimal performance, handles low-level rendering, text
layout, and file system access.

Framework Layer

Widgets, rendering, animation, and gestures. Provides the reactive
programming model and composable widget system that makes
Flutter development intuitive and powerful.

Dart Runtime

Just-In-Time (JIT) compilation for development hot reload,
Ahead-Of-Time (AOT) compilation for optimised release builds
ensuring maximum performance in production.

Platform Channels

Bidirectional communication with native APIs. Enables
access to platform-specific features like camera, GPS, and
notifications whilst maintaining code sharing benefits.

Flutter Engine

Core Implementation

Implemented in C++ for high-performance rendering, the
Flutter Engine serves as the foundation that enables Flutter's
exceptional performance characteristics across all supported
platforms.

Key Responsibilities

« Text layout and typography rendering
» 2D graphics acceleration and compositing
* 60fps animation management

« Platform-specific adaptations

Skia Integration

Integrates with Skia graphics library to accelerate rendering
and manage complex layer compositions. This integration
ensures consistent visual output across different platforms and
devices.

Performance Benefits

Direct compilation to machine code eliminates the
performance overhead typical of interpreted frameworks,
delivering rendering performance that matches or exceeds
native applications.

Widget Framework
Everything is a Widget

This fundamental principle drives Flutter's architecture: text elements, buttons,
layout containers, and even the application root are all widgets. This unified
approach creates unprecedented consistency and composability.

Composable Architecture

Widgets combine to form larger, more complex widgets. Small, focused
components can be reused and combined in countless ways, promoting code
reusability and maintainability.

Reactive Programming Model

Widgets automatically rebuild when their data changes, ensuring the UI always
reflects the current application state without manual intervention or complex
update logic.

() This widget-centric approach allows complex Uls to be built from small,
reusable pieces, making code more maintainable and enabling rapid UI
iteration during development.

Coddb Colo €

’

!

Platform Channels

Bridge Architecture

Platform channels provide a robust
bridge between Dart code and native
platform APIs, enabling Flutter
applications to access device-specific
functionality whilst maintaining a
unified codebase architecture.

Accessible Features

* Camera and photo gallery

* GPS and location services

* Device sensors and hardware
» Push notifications

* Native UI components when
needed

Flexibility Advantage

Provides the flexibility to access any
native functionality without sacrificing
the unified codebase benefits. Custom
platform channels can be created for
proprietary or specialised device
Integrations.

Best Practices

Use platform channels judiciously—
most common functionality is already
abstracted through Flutter plugins, and
excessive native integration can
compromise cross-platform benefits.

Rendering Pipeline

Build Widget Tree

Declarative widget descriptions create a tree structure representing the desired Ul state and hierarchy.

Create RenderObjects

Widgets instantiate corresponding RenderObjects that handle layout calculations and painting operations.

Layout Calculations

Constraint-based layout system determines exact positioning and sizing of all UI elements efficiently.

Paint with Skia

High-performance Skia engine renders the final visual representation with hardware acceleration.

Display Frame

Composited layers are sent to the display system, achieving smooth 60fps performance.

Real-World Adoption

Flutter's enterprise adoption demonstrates its production readiness and scalability. Major companies have chosen Flutter for mission-critical
applications, validating its performance and reliability.

o1 ol T -

ebay

Motors

&L Alibaba 2 '&0

Search for products

Q Search Ifor preducts @

e Duaetlrawn Peairc Pric
Proiod
€330 <9

cubt & stiyoley2
Donrtbar Oo tobddonti 2520
Rngecinsodt oioies
§200 9 ©

Google Ads BMW Alibaba eBay Motors

Google's own advertising Luxury automotive manufacturer = E-commerce giant chose Flutter =~ Specialised marketplace

platform leverages Flutter for uses Flutter for vehicle for critical customer-facing application showcases Flutter's

consistent user experience across companion apps, integrating applications, demonstrating its ability to handle rich media

mobile platforms, handling complex hardware interactions capability to handle high-traffic, = content and complex user

millions of daily active users. with elegant user interfaces. complex business logic. interactions in commercial
environments.

Key reasons for adoption: rapid MVP development, consistent UI across platforms, and significantly lower maintenance costs compared to
traditional native development approaches.

Activity 2 — Paper & Pen (5 minutes)

What primary advantage of Flutter do you believe best supports your
application-development objectives?

Introduction to Dart

Language Characteristics

Dart 1s a modern, object-oriented, strongly typed
programming language specifically designed for client-side
development. Its syntax and features make it particularly
well-suited for building Flutter applications.

Compilation Flexibility

« Native machine code for mobile platforms

« JavaScript compilation for web deployment
« JIT compilation for development

 AOT compilation for production

Learning Curve Advantage

Dart offers a smooth learning curve for developers familiar with
Java, C#, JavaScript, or other modern programming languages,
reducing the barrier to entry for Flutter development.

Key Design Goals

Optimised for fast development cycles, predictable performance, and
easy debugging—making it ideal for both rapid prototyping and
production applications.

.
:
: e
1
.
H
1AM
1)
' o |
1
5

ARIIRNN
HARIARR
i e

—— T— \—,;+“¥— -
- Il Stream -
_ - Callbacks ‘

il 4 I
Future

Asynchronous Programming in

Dart

The Problem

Network requests, file operations,
and database queries can take
significant time to complete. If
these operations run on the main
thread, they block the UI, creating
poor user experiences with frozen
interfaces and unresponsive
controls.

Dart's Solution

async/await syntax and Futures
provide clean, readable non-
blocking code that maintains Ul
responsiveness whilst handling
time-consuming operations
clegantly.

Streams for Continuous
Data

Handle continuous event and data
flows like real-time user input, live
chat messages, or sensor data

using Dart's powerful Stream
APIs.

Best Practices

« Use async/await for single
operations

 Use Streams for continuous data

* Always handle errors with try-
catch

* Avoid blocking the main thread

Dart Asynchroous :

{ hello world >

=

Dart Example with Async/Await

Future<void> main() async {
final data = await fetchGreeting();
for (var i = 1; i <= 3; i++) {
print('$data #%$i');
}
}

Future<String> fetchGreeting() async {
await Future.delayed(Duration(milliseconds: 300));
return 'Hello Flutter';

¥

This example demonstrates several key Dart concepts working together:

- Asynchronous Functions - Awaiting Results - Simple Loops
Functions marked with async can use await to The await keyword pauses function execution Standard control flow works naturally with
pause execution until futures complete, without until the future resolves, then continues with the asynchronous code, making complex operations

blocking other operations. result value. easy to read and maintain.

Packages & pub.dev

Official Repository Selection Best Practices

Choose reputable packages by
evaluating maintenance frequency,
community support, documentation
quality, and compatibility with your
Flutter version.

pub.dev serves as the official package
repository for Dart and Flutter, hosting
thousands of well-maintained
packages that extend your application
capabilities significantly.

Essential Categories Evaluation Criteria
« HTTP and networking 1.

» JSON parsing and serialisation

Recent updates and active
maintenance

Strong community ratings and
usage

» Firebase integration 2.

* SQLite and database access

: 3. Comprehensive documentation
« State management solutions

« UI components and animations 4. Compatible license terms

5. Performance impact assessment
Quality packages can dramatically accelerate development whilst maintaining code
reliability. However, evaluate dependencies carefully to avoid technical debt and
security vulnerabilities.

Packapttions Create Paccage Login

PuButter Packages

OKia Brgomadios
Asttol Cpeases €12 44. MEdmo
o UingMatament
99 stateManagement
P StateManagement

o Netvorikg

» Netuorkirg +

¢ | Netvwer feackiong

J) Mattiter Zoiug

O Nedatet: caing +

PPAGE

Orsunockoe Gera 1D Pulte PO Ratte

Snomcsniatscet.

.
. ‘
|
tio. Ul,
lour Bledt.

Rigranizons

X

Provider

S2..188.140 2L3320K

[z}
Prackssio lisne oo Rocgacs

ou
dleubosistCs:, Pet 0922, BBU,
Pissondow)0\ Buwono

Ts droer Q GeatoOeelr. OLsrend -

6 Politader

Dheetiosthinhiee Raedweadr
Papectcioscier Plier Pocclidians
Decaling Clae CBiie Riless

e RS

* Fiaate beectiat

Roet fioooc@oud bulmoikez filitne
otaciga: Pieit Patt e Wiledixe

Peesaiher Bler Retatinee.

@R o oo -

o cteacther Wad

Wing Udo fhamingior @y acllee Wrer Unge fondenes

L]
PULErOS Q. Seerch lor packages.. 4 ° °

Rudontior v

Flutter-Bloc

52, %4328 Mo 21538.13

) >
€4 Pochimstiter titse Ccgor
Pywiccaroacondson Ploeanie

Dasgee Dy Degeler Pir. Beun..

Prpriteny)h Buams

W Fluttr Roockagng

Dretter Sater Ru tanshe surien
Statcatesttur canccrigett.

Poctsetiantie 8bbgjeiors.

-

®® prattonatd Mot

Dnotdretiviinsorhe Buockin
scazticidie Crtistees jur.Tuidber
Sue Batur tee Bbleci £6es..

Feasomt C OCoutrows Wmdans @

@ Regte Bube

e e

http://pub.dev

Activity 3 — Paper & Pen (5 minutes)

"What is the single most important reason you would choose Flutter

for a project?”

Required Tools

(Q Flutter SDK

Core toolkit and command-line interface providing compilation, hot
reload, testing frameworks, and deployment tools for all supported
platforms.

Development IDEs

Android Studio (full-featured with excellent debugging) or Visual
Studio Code (lightweight with great extensions) both offer strong
Flutter support.

Testing Devices

Android Emulator, 10S Simulator, or physical devices for
comprehensive testing across different screen sizes and operating
system versions.

Version Control

Git recommended for team collaboration, code backup, and project
history management—essential for professional development
workflows.

' Flutter Documentation = Community Packages Blog

Installing Flutter SDK

Download Latest Release

Flutter sTek SDK

© V310.0
~

“l‘ N .

Flutter
v311.0

Visit https://flutter.dev and download the latest stable release for your operating
system. Stable releases ensure compatibility and reliability.

Extract and Configure Path

Extract the SDK to a secure directory (avoid spaces in path names) and add the
flutter/bin directory to your system's PATH environment variable.

R

Verity Installation

Run flutter doctor to check all dependencies and system configuration.
This diagnostic tool identifies missing components and configuration issues.

- Resolve Dependencies

Address any issues identified by flutter doctor before creating your first project.
Common requirements include Android SDK, Xcode (for 10S), and IDE
plugins.

) Important: Proper PATH configuration ensures Flutter commands work

. from any directory. Test by opening a new terminal and running flutter
Download for Windows —-versionl

Get started with Flutter

https://flutter.dev

Configuring Android Studio

Essential Plugins

Install both Flutter and Dart plugins
from the Android Studio Marketplace.
These plugins provide syntax
highlighting, debugging support, hot
reload integration, and widget
inspection tools.

Android Emulator Setup

Configure an Android Virtual Device
(AVD) using a modern Pixel device
profile. Choose system images with
Google Play Services for
comprehensive testing capabilities.

SDK License Acceptance

Accept all Android SDK licenses by
running flutter doctor --
android-1licenses in your
terminal. This step is required for
building and deploying Android
applications.

Performance Optimisation

 Enable hardware acceleration for
emulator

e Allocate sufficient RAM
(minimum 4GB)

 Enable Intel HAXM or AMD
hypervisor

* Close unnecessary applications
during development

Setting Up VS Code (Optional)

Lightweight Alternative Integrated Development

Visual Studio Code offers a Use the integrated terminal for Flutter

lightweight yet powerful alternative to commands, ensuring seamless Flutter
Android Studio, particularly suitable workflow between code editing and

for developers preferring minimal command-line operations without

resource usage or those with lower- switching applications.

specification development machines.

When to Choose VS Code Flsttor

e Limited system resources
* Flutter extension (official) .

Essential Extensions

Preference for customisable
« Dart extension (official) interface

* Flutter Widget Snippets (helpful) * Focus on code editing over visual

 Bracket Pair Colorizer design
(readability) * Integration with existing VS Code
workflows

Veritying the Installation
flutter doctor

The flutter doctor command serves as your installation health check, providing comprehensive diagnosis of your development environment
and highlighting any configuration issues that need resolution.

Comprehensive System Check Issue Resolution Common Installation Issues
Confirms Flutter and Dart versions, Address any warnings carefully—they Missing Android SDK components,
detects connected devices, validates often indicate missing dependencies or incorrect PATH variables, outdated
IDE plugins, and verifies Android configuration problems that will cause Java or Gradle versions, and missing
SDK configuration in a single issues during development. IDE plugins are typical problems with
command. clear solutions.

() Pro Tip: Run flutter doctor regularly, especially after system updates or when encountering build issues. It often reveals the root
cause of development problems.

Activity 4 — Raise-Hand Discussion

"Can Flutter apps match the performance

of native apps? Why or why not?"

Conclusion

Cross-Platform Excellence

Flutter delivers fast, high-
performance cross-platform
development from a single
codebase, revolutionising traditional
mobile development approaches and
significantly reducing time-to-
market for applications.

Foundation for Success

Modern Language Benefits

Dart provides modern, safe, and
efficient programming features
including null safety, asynchronous
programming, and strong typing
that enhance code reliability and
developer productivity.

Correct environment setup is crucial for upcoming labs and projects. A
properly configured development environment enables smooth learning
progression and professional development practices.

These foundational concepts form the basis for everything we'll explore in
subsequent lectures. Understanding cross-platform development principles,
Flutter's architecture, and Dart's capabilities prepares you for hands-on
development work and professional software engineering practices.

My google site

Thank you...

Any questions??

D

Jox Aaal)l Ldadll #3sad il QR Code Al i) e grese (o2
A0l C'_\\).a.a\A.AM u.'.""“;ﬂ ‘\.A@_A (‘;S.\Un;yu E)A\AA]\

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

