(‘sg.‘%}» + Al-Mustaqgbal University
g College of Sciences
N Intelligent Medical System Department

| 8y I a la
AL MUSTAQBAL UNIVERSITY

polell auls
SVl aubll aslbiVl pe a9

Lecture: (5)

Apply the Apriori Algorithm and mine multilevel association rules.
Subject: Clinical Data Mining

Level: Four
Lecturer: Dr. Maytham Nabeel Meqdad

Study Year: 2025-2026

Al-Mustagbal University

@ l College of Sciences
\ 24 Intelligent Medical System Department
S

Apply the Apriori Algorithm and mine multilevel association rules.

The Apriori Algorithm: Finding Frequent Iltemsets Using Candidate
Generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining
frequent itemsets for Boolean association rules. The name of the algorithm is based on the fact
that the algorithm uses prior knowledge of frequent itemset properties, as we shall see following.
Apriori employs an iterative approach known as a level-wise search, where k-itemsets are used
to explore (k+1)-itemsets. First, the setof frequent 1-itemsets is found by scanning the database
to accumulate the count for each item, and collecting those items that satisfy minimum support.
The resulting set is denoted L1.Next, L1 is used to find L2, the set of frequent 2-itemsets, which
is used to find L3, and so on, until no more frequent k-itemsets can be found. The finding of
each Lk requires one full scan of the database. To improve the efficiency of the level-wise
generation of frequent itemsets, an important property called the Apriori property, presented
below, is used to reduce the search space.We will first describe this property, and then show an
example illustrating its use.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.

TheApriori property is based on the following observation. By definition, if an itemset | does not
satisfy the minimum support threshold, min sup, then | is not frequent; that is, P(I) < min sup. If
an item A is added to the itemset I, then the resulting itemset (i.e., | [A) cannot occur more
frequently than 1. Therefore, | [A is not frequent either; that is, P(I [A) < min sup.

This property belongs to a special category of properties called antimonotone in the sense that if
a set cannot pass a test, all of its supersets will fail the same test as well. It is called
antimonotone because the property is monotonic in the context of failing a test.7 “How is the
Apriori property used in the algorithm?” To understand this, let us look at how Lk-1 is used to

find Lk for k, 2. A two-step process is followed, consisting of join and prune actions.

1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 with itself. This
set of candidates is denoted Ck. Let l1 and I2 be itemsets in Lk-1. The notation Ii[j] refers to the jth
item in li (e.g., li[k—2] refers to the second to the last item in I1). By convention, Apriori assumes
that items within a transaction or itemset are sorted in lexicographic order.

For the (k 1)-itemset, li, this means that the items are sorted such that li[1] < li[2] < ... < li[k—1].
The join, Lk-10n Lk-1, is performed, where members of Lk-1 are joinable if their first (k—2) items are
in common. That is, members |1 and |2 of Lk-1 are joined
if (12[1] = I2[1]) © (12[2] = 12[2]) ". . " (l2[k-2] = l2[k-2]) "(I1[k-1] < Iz[k-1]). The condition l1[k-1] < l2[k-1] simply
ensures that no duplicates are generated. The resulting itemset formed

by joining lr and I2is 11[1], 12[2], . . ., I1[k=2], l1[k=1], I2[k—1].

2. The prune step:Ckis a superset of Lk, that is, its members may or may not be frequent,
but all of the frequent k-itemsets are included inCk.Ascan of the database to determine
the count of each candidate in Ck would result in the determination of Lk (i.e., all
candidates having a count no less than the minimum support count are frequent by
definition, and therefore belong to Lk). Ck, however, can be huge, and so this could

Page |2 Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

involve heavy computation. To reduce the size of Ck, the Apriori property is used as
follows. Any (k—1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.
Hence, if any (k—1)-subset of a candidate k-itemset is not in Lk-1, then the candidate
cannot be frequent either and so can be removed fromCk. This subset testing can be
done quickly by maintaining a hash tree of all frequent itemsets.

Table 1 Transactional data for an All Electronics branch.
TID List of item IDs

TID List of item_IDs
T100 11,12, 15

I'200 12, 14

T300 12,13

400 [1,12, 14

T500 11,13

['640 12,13
T700 1,13
T800 1,12, 13,15

T900 I, 12,13

involve heavy computation. To reduce the size of Ck, the Apriori property is used as follows. Any
(k—1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k-1)-
subset of a candidate k-itemset is not in Lk-1, then the candidate cannot be frequent either and
so can be removed fromCk. This subset testing can be done quickly by maintaining a hash tree
of all frequent itemsets.

Study Year: 2025-2026

Al-Mustagbal University

@) College of Sciences
Ny / Intelligent Medical System Department

Example 1 Apriori. Let’s look at a concrete example, based on the AllElectronics transaction
database, D, of Table 1. There are nine transactions in this database, that is, |D| =9. We use
Figure 5.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets,
C1. The algorithm simply scans all of the transactions in order to count the number of
occurrences of each item.
2. Suppose that the minimum support count required is 2, that is, min sup = 2. (Here, we are
referring to absolute support because we are using a support count. The corresponding relative
support is 2/9 = 22%). The set of frequent 1-itemsets, L1, can then be determined. It consists of
the candidate 1-itemsets satisfying minimum support. In our example, all of the candidates in C1
satisfy minimum support.
3. To discover the set of frequent 2-itemsets, L2, the algorithT uses the join L1on L1to

fle1
generate a candidate set of 2-itemsets, C2.% C2 consists of t.) 2-itemsets. Note that no
candidates are removed fromCz2 during the prune step because each subset of the candidates is
also frequent.

C, L,
Scan D for ltemset | Sup. count | Compare candidate | Itemset | Sup. count
count of each (i1} 6 support count with (1) 6
candidate {12} 7 minimum support {12} 7
— % {13} count (13) 6

{14) S—) © 2
{15) (15) 2

(2% (o L,

Generate TItemset | Scan D for |Ttemset | Sup. count | Compare candidate | Itemset | Sup. count
candidates from L; | (11, 12) | count of each | (11, 12} 4 support count with (11, 12)
—_— {1, 13} | candidate J[11, 13} minimum support | (11, 13)
(TLI4) | |[T1.14) count (11,15)
[11,15) (11,15} » |(12.13)
(12,13} (12, 13) (12, 14)
(12,14} {12, 14) {12, 15)
(12,15} (12,15}
(13, 14) (13, 14}
{13, 15} {13, 15}
[14,15) (14,15}

&

LIS SE N SN 56 B SN

P -

o-=o

))) = Compare candidate e,
Generate € Ttemset Scan D for | ltemset |Sup. count support count with |_Itemset_|Sup. count
candidates from J(11, 12, 13} count of each| {11, 12, 13) 2 minimum support |11, 12,13} 2
L, candidate count
—ee (11, 12, 15 } | > | {11, 12,]5]) 2 —e e 11, 12, 15 2

Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate
generation.

Algorithm: Apriori
Input:

D, a database of transactions
min_sup, the minimum support count threshold

Output:

L, frequent itemsets in D
Method:

L1 = find frequent 1-itemsets(D)
for (k =2; Lk—1 # @; k++) {
3. Ck = apriori_gen(Lk—1)
4. for each transactiont € D {
5. Ct = subset(Ck, t)
6. for each candidate c € Ct
7. c.count++
8.}
9. Lk ={ c € Ck| c.count > min_sup }

}
return L= U Lk

Procedure apriori_gen(Lk—1: frequent (k—1)-itemsets)

1. foreach itemset I1 € Lk—1
2. foreach itemset 12 € Lk—1
3. if (L[] = 12[10) A (11[2] = 12[2]) A ... A (11[k=2] = 12[k=2]) A (11[k—1] < 12[k—1]) then {
4 c=11ul2
5. if has_infrequent subset(c, Lk—1) then
6 delete ¢
7 else add c to Ck
8.
2. return Ck

Procedure has_infrequent_subset(c: candidate k-itemset, Lk—1: frequent (k—1)-itemsets)

1. foreach (k—1)-subset s of c
2. ifs & Lk—1 then
3. return TRUE

2. return FALSE

Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

Step by step to apply the Apriori algorithm and mine multilevel association
rules. I’1l first explain the concept, then give an example with calculations.

1. Understanding the Apriori Algorithm

The Apriori algorithm is used to find frequent itemsets and association rules from a
transaction database. Its steps:

1. Set minimum support (min_sup) and confidence (min_conf£).
Find frequent 1-itemsets (r.1) — items that appear in at least min sup fraction of
transactions.
Generate candidate k-itemsets (ck) from frequent (k-1)-itemsets (1k-1).
Prune candidates that have infrequent subsets.
Count support of candidates in the database and generate frequent k-itemsets (Lx).
Repeat until no more frequent itemsets are found.
Generate association rules from frequent itemsets with confidence > min_conf.

2. Multilevel Association Rules
Multilevel association rules consider items at different levels of abstraction, for example:

e Level 1: Fruit
e Level 2: apple, Banana
e Level 3: red Apple, Green Apple

You can mine rules at different levels:

« Higher levels: more general rules (e.g., Fruit - Snack)
o Lower levels: more specific rules (e.g., Red Apple - Juice)

To do this:

. Encode items in a hierarchical structure.

. Apply Apriori level by level.
Use different support thresholds: higher-level rules may need higher support, lower-
level rules lower support.

Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

3. Example Dataset

Suppose we have transactions:

TID| Items |
11 |Red Apple, Banana, Milk |
2 ||Green Apple, Banana, Milk|
3 |Red Apple, Milk |
4 |Banana, Milk |
5 |Green Apple, Banana |

Step 1: Frequent 1-itemsets

Assume min_sup = 60% — support count > 3 (out of 5 transactions)

| Item |[Count|Frequent]
IRed Apple |2 |No |
(Green Apple|2 |No |
Apple R+G)[4 _ |Yes |

1

Banana 4 |Yes
Milk 4 ves

— L1 = {Apple, Banana, Milk}
Step 2: Frequent 2-itemsets
Candidates: {Apple, Banana}, {Apple, Milk}, {Banana, Milk}

Count support:

| Itemset ||Count||Frequent]
/Apple, Banana|3 |lYes |
Apple, Milk 3 [lyes |
Banana, Milk 3 [[yes |

- L2 = {Apple, Banana}, {Apple, Milk}, {Banana, Milk}

Page |7 Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

Step 3: Frequent 3-itemsets
Candidate: {Apple, Banana, Milk}

Count support:

\ Itemset HCountHFrequent\
/Apple, Banana, Milk|2 |No |

>13=0
Step 4: Association Rules
From L2:

1. {Apple} — {Banana}, confidence = support({Apple, Banana}) / support({Apple}) = 3/4
=75%
{Banana} — {Apple}, confidence = 3/4 = 75%
{Apple} — {Milk}, confidence = 3/4 =75%
{Milk} — {Apple}, confidence =3/4 = 75%
{Banana} — {Milk}, confidence = 3/4 = 75%
{Milk} — {Banana}, confidence = 3/4 = 75%

All rules with confidence > 70% are strong rules.

4. Multilevel Mining

e Levell: Fruit - Dpairy
o Support(Fruit) = 4, Support(Dairy) = 4
o Rule: Fruit — Dairy, confidence =4/4 = 100% [
e Level 2: {Apple, Banana} — Milk
o As above, support = 3/5 = 60%, confidence = 75% [
o Level 3: {Red Apple, Banana} — Milk
o Count support = 1/5 = 20%, confidence = 50% [(below threshold)

So multilevel rules allow gradual generalization, with higher support at higher levels and lower
support at lower levels.

Study Year: 2025-2026

Al-Mustagbal University

College of Sciences

Intelligent Medical System Department

Summary

Use Apriori algorithm to find frequent itemsets level by level.

Use hierarchical item encoding for multilevel rules.

. Generate association rules from frequent itemsets, applying min_conf at each level.
Higher-level rules tend to have higher support, lower-level rules more specific but

lower support.

Example: Apriori Algorithm

Transaction Database (D)

[Transaction) Items |
1 |Laptop, Mouse |
T2 |[Laptop, Printer |
|
|

T3 [Mouse, Keyboard

T4 [Laptop, Mouse

IT5 [Laptop, Keyboard, Mouse|
T6 |Printer, Keyboard |
T7 |Laptop, Keyboard |
T8 [Mouse, Printer |
9 [Laptop, Mouse, Keyboard|

Number of transactions =9 — [D| =9

Minimum support count = 2 (absolute support) — relative support = 2/9 = 22%

Step 1: Find Frequent 1-itemsets (L1)

o Candidate 1-itemsets:
Cl = {Laptop, Mouse, Keyboard, Printer}
e Count support in D:
o Laptop=6
o Mouse =6
o Keyboard =5
o Printer=3

e All>min sup — L1 = {Laptop, Mouse, Keyboard, Printer} [

Page |9

Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

Step 2: Generate Candidate 2-itemsets (C2) using Join

e Join L1 with itself:

C2 = {Laptop+Mouse, Laptop+Keyboard, Laptop+Printer, Mouse+Keyboard, Mouse+Printer,
Keyboard+Printer}

e Prune step: check all subsets of size 1 (all in L1, so nothing is removed)
e Count support for C2:

Laptop+Mouse = 4

Laptop+Keyboard = 3

Laptop+Printer = 2

Mouse+Keyboard = 3

Mouse+Printer = 2

Keyboard+Printer = 1 (< min sup) — remove

e L2 = {Laptop+Mouse, Laptop+Keyboard, Laptop+Printer, Mouse+Keyboard,
Mouse+Printer} [

Step 3: Generate Candidate 3-itemsets (C3) using Join

e Join L2 with itself (only compatible pairs):

C3 = {Laptop+Mouse+Keyboard, Laptop+Mouse+Printer, Laptop+Keyboard+Printer,
Mouse+Keyboard+Printer}

e Prune step: remove candidates if any 2-item subset is not frequent (not in L2)

Laptop+Keyboard+Printer — subset Laptop+Printer [, Laptop+Keyboard [,
Keyboard+Printer [1 — remove

Mouse+Keyboard+Printer — subset Mouse+Printer [, Mouse+Keyboard [,
Keyboard+Printer [] — remove

Laptop+Mouse+Printer — all subsets in L2 [1 — keep
Laptop+Mouse+Keyboard — all subsets in L2 [] — keep

e Count support for remaining candidates:

e Laptop+Mouse+Keyboard = 2 — frequent
o Laptop+Mouse+Printer = 1 — < min sup — remove

e L3 ={Laptop+Mouse+Keyboard} [

Page | 10 Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

Step 4: Stop

« No candidates for 4-itemsets can be frequent (because only 3-itemset is left)
« Final Frequent Itemsets:

Level| Frequent Itemsets (Lk) |
IL1 |[Laptop, Mouse, Keyboard, Printer |
L2 ||Laptop+Mouse, Laptop+Keyboard, Laptop+Printer, Mouse+Keyboard, Mouse+Printer|
L3 |Laptop+Mouse+Keyboard |

Summary

Join step: combine frequent (k-1)-itemsets to generate k-itemset candidates
Prune step: remove candidates if any subset is not frequent (Apriori property)
Scan database to count support and select frequent itemsets

Online Python - IDE, Editor, Compiler, Interpreter

Apriori Algorithm in Python
from itertools import combinations

def apriori(transactions, min_support):

transactions: list of transactions (each transaction is a list of items)
min_support: minimum support count (absolute)

1.
2.
3.
4.
5.
6.
7.
8.
9.

Step 1: Find frequent 1-itemsets (L1)
item_counts = {}
for transaction in transactions:
for item in transaction:
item_counts[item] = item_counts.get(item, 0) + 1

Keep items that satisfy min_support
L1 = {frozenset([item]): count for item, count in item_counts.items() if count >= min_support}
print("L1:", L1)

Initialize variables

Lk=L1

k=2

frequent_itemsets = dict(L1) # Store all frequent itemsets

while Lk:
Step 2: Generate candidate k-itemsets (Ck) using Join
items = list(Lk.keys())
Ck={}

Join step: combine itemsets to create candidates
for i in range(len(items)):
for j in range(i+1, len(items)):
union_set = items[i] | items[j]
if len(union_set) == k:
Ck[union_set] =0

Step 3: Count support for each candidate in Ck

Page |11 Study Year: 2025-2026

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

for transaction in transactions:
transaction_set = set(transaction)
for candidate in Ck:
if candidate.issubset(transaction_set):
Ck[candidate] += 1

Step 4: Prune candidates that do not meet min_support
Lk = {itemset: count for itemset, count in Ck.items() if count >= min_support}

Add Lk to frequent itemsets
frequent_itemsets.update(LK)
if Lk:

print(f"L{k}:", LK)

k+=1
return frequent_itemsets

Example usage
transactions = [
['Laptop’, 'Mouse,
['Laptop’, 'Printer1,
['Mouse', 'Keyboard'],
['Laptop’, 'Mouse,
['Laptop’, 'Keyboard', 'Mouse,
['Printer’, 'Keyboard'],
['Laptop’, 'Keyboard'],
['Mouse', 'Printer1],
['Laptop’, 'Mouse', '‘Keyboard']
1

min_support = 2

frequent_itemsets = apriori(transactions, min_support)

print("\nAll Frequent Itemsets:")

for itemset, count in frequent_itemsets.items():
print(set(itemset), ":", count)

References

[1] Han and M. Kamber, “ Data Mining Tools and Technique s”, Morgan Kaufmann Publishers. Page 237

[2] .M.H. Dunham, ““ Data Mining Introductory and Adv anced Topics”, Pear son Education

Study Year: 2025-2026

