

P a g e | 1 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 العلومكلية
 الانظمة الطبية الذكية مــــــــــســق

Lecture: (5)

Apply the Apriori Algorithm and mine multilevel association rules.

Subject: Clinical Data Mining

Level: Four
Lecturer: Dr. Maytham Nabeel Meqdad

P a g e | 2 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Apply the Apriori Algorithm and mine multilevel association rules.

The Apriori Algorithm: Finding Frequent Itemsets Using Candidate
Generation
Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining
frequent itemsets for Boolean association rules. The name of the algorithm is based on the fact

that the algorithm uses prior knowledge of frequent itemset properties, as we shall see following.

Apriori employs an iterative approach known as a level-wise search, where k-itemsets are used

to explore (k+1)-itemsets. First, the setof frequent 1-itemsets is found by scanning the database

to accumulate the count for each item, and collecting those items that satisfy minimum support.

The resulting set is denoted L1.Next, L1 is used to find L2, the set of frequent 2-itemsets, which

is used to find L3, and so on, until no more frequent k-itemsets can be found. The finding of

each Lk requires one full scan of the database. To improve the efficiency of the level-wise

generation of frequent itemsets, an important property called the Apriori property, presented

below, is used to reduce the search space.We will first describe this property, and then show an

example illustrating its use.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.

TheApriori property is based on the following observation. By definition, if an itemset I does not
satisfy the minimum support threshold, min sup, then I is not frequent; that is, P(I) < min sup. If

an item A is added to the itemset I, then the resulting itemset (i.e., I [A) cannot occur more

frequently than I. Therefore, I [A is not frequent either; that is, P(I [A) < min sup.

This property belongs to a special category of properties called antimonotone in the sense that if
a set cannot pass a test, all of its supersets will fail the same test as well. It is called
antimonotone because the property is monotonic in the context of failing a test.7 “How is the

Apriori property used in the algorithm?” To understand this, let us look at how Lk−1 is used to

find Lk for k , 2. A two-step process is followed, consisting of join and prune actions.

1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk−1 with itself. This

set of candidates is denoted Ck. Let l1 and l2 be itemsets in Lk−1. The notation li[j] refers to the jth

item in li (e.g., l1[k−2] refers to the second to the last item in l1). By convention, Apriori assumes

that items within a transaction or itemset are sorted in lexicographic order.

For the (k 1)-itemset, li, this means that the items are sorted such that li[1] < li[2] < ... < li[k−1].

The join, Lk−1 on Lk−1, is performed, where members of Lk−1 are joinable if their first (k−2) items are

in common. That is, members l1 and l2 of Lk−1 are joined
 if (l1[1] = l2[1]) ^ (l1[2] = l2[2]) ^. . .^(l1[k−2] = l2[k−2]) ^(l1[k−1] < l2[k−1]). The condition l1[k−1] < l2[k−1] simply

ensures that no duplicates are generated. The resulting itemset formed

by joining l1 and l2 is l1[1], l1[2], . . . , l1[k−2], l1[k−1], l2[k−1].

2. The prune step:Ck is a superset of Lk, that is, its members may or may not be frequent,
but all of the frequent k-itemsets are included inCk.Ascan of the database to determine
the count of each candidate in Ck would result in the determination of Lk (i.e., all
candidates having a count no less than the minimum support count are frequent by
definition, and therefore belong to Lk). Ck, however, can be huge, and so this could

P a g e | 3 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

involve heavy computation. To reduce the size of Ck, the Apriori property is used as

follows. Any (k−1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.

Hence, if any (k−1)-subset of a candidate k-itemset is not in Lk−1, then the candidate

cannot be frequent either and so can be removed fromCk. This subset testing can be
done quickly by maintaining a hash tree of all frequent itemsets.

Table 1 Transactional data for an All Electronics branch.
TID List of item IDs

involve heavy computation. To reduce the size of Ck, the Apriori property is used as follows. Any

(k−1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k−1)-

subset of a candidate k-itemset is not in Lk−1, then the candidate cannot be frequent either and
so can be removed fromCk. This subset testing can be done quickly by maintaining a hash tree
of all frequent itemsets.

P a g e | 4 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Example 1 Apriori. Let’s look at a concrete example, based on the AllElectronics transaction

database, D, of Table 1. There are nine transactions in this database, that is, |D| = 9. We use

Figure 5.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets,
C1. The algorithm simply scans all of the transactions in order to count the number of
occurrences of each item.
2. Suppose that the minimum support count required is 2, that is, min sup = 2. (Here, we are
referring to absolute support because we are using a support count. The corresponding relative
support is 2/9 = 22%). The set of frequent 1-itemsets, L1, can then be determined. It consists of
the candidate 1-itemsets satisfying minimum support. In our example, all of the candidates in C1

satisfy minimum support.
3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 on L1 to

generate a candidate set of 2-itemsets, C2.8 C2 consists of 2-itemsets. Note that no
candidates are removed fromC2 during the prune step because each subset of the candidates is
also frequent.

P a g e | 5 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate
generation.

Algorithm: Apriori

Input:

 D, a database of transactions

 min_sup, the minimum support count threshold

Output:

 L, frequent itemsets in D

Method:

1. L1 = find frequent 1-itemsets(D)

2. for (k = 2; Lk−1 ≠ ∅; k++) {
 3. Ck = apriori_gen(Lk−1)

 4. for each transaction t ∈ D {
 5. Ct = subset(Ck, t)

 6. for each candidate c ∈ Ct

 7. c.count++

 8. }

 9. Lk = { c ∈ Ck | c.count ≥ min_sup }
3. }

4. return L = ⋃ Lk

Procedure apriori_gen(Lk−1: frequent (k−1)-itemsets)

1. for each itemset l1 ∈ Lk−1

2. for each itemset l2 ∈ Lk−1

3. if (l1[1] = l2[1]) ∧ (l1[2] = l2[2]) ∧ ... ∧ (l1[k−2] = l2[k−2]) ∧ (l1[k−1] < l2[k−1]) then {

 4. c = l1 ∪ l2
 5. if has_infrequent_subset(c, Lk−1) then

 6. delete c

 7. else add c to Ck

 8. }

2. return Ck

Procedure has_infrequent_subset(c: candidate k-itemset, Lk−1: frequent (k−1)-itemsets)

1. for each (k−1)-subset s of c

2. if s ∉ Lk−1 then
3. return TRUE

2. return FALSE

P a g e | 6 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

- Step by step to apply the Apriori algorithm and mine multilevel association

rules. I’ll first explain the concept, then give an example with calculations.

1. Understanding the Apriori Algorithm

The Apriori algorithm is used to find frequent itemsets and association rules from a

transaction database. Its steps:

1. Set minimum support (min_sup) and confidence (min_conf).

2. Find frequent 1-itemsets (L1) – items that appear in at least min_sup fraction of

transactions.

3. Generate candidate k-itemsets (Ck) from frequent (k-1)-itemsets (Lk-1).

4. Prune candidates that have infrequent subsets.

5. Count support of candidates in the database and generate frequent k-itemsets (Lk).

6. Repeat until no more frequent itemsets are found.

7. Generate association rules from frequent itemsets with confidence ≥ min_conf.

2. Multilevel Association Rules

Multilevel association rules consider items at different levels of abstraction, for example:

 Level 1: Fruit

 Level 2: Apple, Banana

 Level 3: Red Apple, Green Apple

You can mine rules at different levels:

 Higher levels: more general rules (e.g., Fruit → Snack)

 Lower levels: more specific rules (e.g., Red Apple → Juice)

To do this:

1. Encode items in a hierarchical structure.

2. Apply Apriori level by level.

3. Use different support thresholds: higher-level rules may need higher support, lower-

level rules lower support.

P a g e | 7 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

3. Example Dataset

Suppose we have transactions:

TID Items

1 Red Apple, Banana, Milk

2 Green Apple, Banana, Milk

3 Red Apple, Milk

4 Banana, Milk

5 Green Apple, Banana

Step 1: Frequent 1-itemsets

Assume min_sup = 60% → support count ≥ 3 (out of 5 transactions)

Item Count Frequent

Red Apple 2 No

Green Apple 2 No

Apple (R+G) 4 Yes

Banana 4 Yes

Milk 4 Yes

→ L1 = {Apple, Banana, Milk}

Step 2: Frequent 2-itemsets

Candidates: {Apple, Banana}, {Apple, Milk}, {Banana, Milk}

Count support:

Itemset Count Frequent

Apple, Banana 3 Yes

Apple, Milk 3 Yes

Banana, Milk 3 Yes

→ L2 = {Apple, Banana}, {Apple, Milk}, {Banana, Milk}

P a g e | 8 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Step 3: Frequent 3-itemsets

Candidate: {Apple, Banana, Milk}

Count support:

Itemset Count Frequent

Apple, Banana, Milk 2 No

→ L3 = ∅

Step 4: Association Rules

From L2:

1. {Apple} → {Banana}, confidence = support({Apple, Banana}) / support({Apple}) = 3/4

= 75%

2. {Banana} → {Apple}, confidence = 3/4 = 75%

3. {Apple} → {Milk}, confidence = 3/4 = 75%

4. {Milk} → {Apple}, confidence = 3/4 = 75%

5. {Banana} → {Milk}, confidence = 3/4 = 75%

6. {Milk} → {Banana}, confidence = 3/4 = 75%

All rules with confidence ≥ 70% are strong rules.

4. Multilevel Mining

 Level 1: Fruit → Dairy

o Support(Fruit) = 4, Support(Dairy) = 4

o Rule: Fruit → Dairy, confidence = 4/4 = 100% ✅

 Level 2: {Apple, Banana} → Milk

o As above, support = 3/5 = 60%, confidence = 75% ✅

 Level 3: {Red Apple, Banana} → Milk

o Count support = 1/5 = 20%, confidence = 50% ✅ (below threshold)

So multilevel rules allow gradual generalization, with higher support at higher levels and lower

support at lower levels.

P a g e | 9 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Summary

1. Use Apriori algorithm to find frequent itemsets level by level.

2. Use hierarchical item encoding for multilevel rules.

3. Generate association rules from frequent itemsets, applying min_conf at each level.

4. Higher-level rules tend to have higher support, lower-level rules more specific but

lower support.

===

Example: Apriori Algorithm

Transaction Database (D)

Transaction Items

T1 Laptop, Mouse

T2 Laptop, Printer

T3 Mouse, Keyboard

T4 Laptop, Mouse

T5 Laptop, Keyboard, Mouse

T6 Printer, Keyboard

T7 Laptop, Keyboard

T8 Mouse, Printer

T9 Laptop, Mouse, Keyboard

Number of transactions = 9 → |D| = 9

Minimum support count = 2 (absolute support) → relative support = 2/9 ≈ 22%

Step 1: Find Frequent 1-itemsets (L1)

 Candidate 1-itemsets:
C1 = {Laptop, Mouse, Keyboard, Printer}

 Count support in D:

o Laptop = 6

o Mouse = 6

o Keyboard = 5

o Printer = 3

 All ≥ min sup → L1 = {Laptop, Mouse, Keyboard, Printer} ✅

P a g e | 10 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Step 2: Generate Candidate 2-itemsets (C2) using Join

 Join L1 with itself:

C2 = {Laptop+Mouse, Laptop+Keyboard, Laptop+Printer, Mouse+Keyboard, Mouse+Printer,

Keyboard+Printer}

 Prune step: check all subsets of size 1 (all in L1, so nothing is removed)

 Count support for C2:

 Laptop+Mouse = 4

 Laptop+Keyboard = 3

 Laptop+Printer = 2

 Mouse+Keyboard = 3

 Mouse+Printer = 2

 Keyboard+Printer = 1 (< min sup) → remove

 L2 = {Laptop+Mouse, Laptop+Keyboard, Laptop+Printer, Mouse+Keyboard,

Mouse+Printer} ✅

Step 3: Generate Candidate 3-itemsets (C3) using Join

 Join L2 with itself (only compatible pairs):

C3 = {Laptop+Mouse+Keyboard, Laptop+Mouse+Printer, Laptop+Keyboard+Printer,

Mouse+Keyboard+Printer}

 Prune step: remove candidates if any 2-item subset is not frequent (not in L2)

 Laptop+Keyboard+Printer → subset Laptop+Printer ✅, Laptop+Keyboard ✅,

Keyboard+Printer ✅ → remove

 Mouse+Keyboard+Printer → subset Mouse+Printer ✅, Mouse+Keyboard ✅,

Keyboard+Printer ✅ → remove

 Laptop+Mouse+Printer → all subsets in L2 ✅ → keep

 Laptop+Mouse+Keyboard → all subsets in L2 ✅ → keep

 Count support for remaining candidates:

 Laptop+Mouse+Keyboard = 2 → frequent

 Laptop+Mouse+Printer = 1 → < min sup → remove

 L3 = {Laptop+Mouse+Keyboard} ✅

P a g e | 11 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Step 4: Stop

 No candidates for 4-itemsets can be frequent (because only 3-itemset is left)

 Final Frequent Itemsets:

Level Frequent Itemsets (Lk)

L1 Laptop, Mouse, Keyboard, Printer

L2 Laptop+Mouse, Laptop+Keyboard, Laptop+Printer, Mouse+Keyboard, Mouse+Printer

L3 Laptop+Mouse+Keyboard

Summary

 Join step: combine frequent (k-1)-itemsets to generate k-itemset candidates

 Prune step: remove candidates if any subset is not frequent (Apriori property)

 Scan database to count support and select frequent itemsets

1. # Online Python - IDE, Editor, Compiler, Interpreter

2.
3. # Apriori Algorithm in Python

4. from itertools import combinations
5.

6. def apriori(transactions, min_support):

7. """
8. transactions: list of transactions (each transaction is a list of items)

9. min_support: minimum support count (absolute)

10. """
11.

12. # Step 1: Find frequent 1-itemsets (L1)

13. item_counts = {}
14. for transaction in transactions:

15. for item in transaction:

16. item_counts[item] = item_counts.get(item, 0) + 1
17.

18. # Keep items that satisfy min_support

19. L1 = {frozenset([item]): count for item, count in item_counts.items() if count >= min_support}
20. print("L1:", L1)

21.

22. # Initialize variables
23. Lk = L1

24. k = 2

25. frequent_itemsets = dict(L1) # Store all frequent itemsets
26.

27. while Lk:

28. # Step 2: Generate candidate k-itemsets (Ck) using Join
29. items = list(Lk.keys())

30. Ck = {}

31.
32. # Join step: combine itemsets to create candidates

33. for i in range(len(items)):

34. for j in range(i+1, len(items)):
35. union_set = items[i] | items[j]

36. if len(union_set) == k:

37. Ck[union_set] = 0
38.

39. # Step 3: Count support for each candidate in Ck

P a g e | 12 Study Year: 2025-2026

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

40. for transaction in transactions:

41. transaction_set = set(transaction)
42. for candidate in Ck:

43. if candidate.issubset(transaction_set):

44. Ck[candidate] += 1
45.

46. # Step 4: Prune candidates that do not meet min_support

47. Lk = {itemset: count for itemset, count in Ck.items() if count >= min_support}
48.

49. # Add Lk to frequent itemsets

50. frequent_itemsets.update(Lk)
51. if Lk:

52. print(f"L{k}:", Lk)

53.

54. k += 1

55.

56. return frequent_itemsets
57.

58. # Example usage

59. transactions = [
60. ['Laptop', 'Mouse'],

61. ['Laptop', 'Printer'],

62. ['Mouse', 'Keyboard'],
63. ['Laptop', 'Mouse'],

64. ['Laptop', 'Keyboard', 'Mouse'],

65. ['Printer', 'Keyboard'],
66. ['Laptop', 'Keyboard'],

67. ['Mouse', 'Printer'],

68. ['Laptop', 'Mouse', 'Keyboard']
69.]

70.

71. min_support = 2

72.

73. frequent_itemsets = apriori(transactions, min_support)

74. print("\nAll Frequent Itemsets:")
75. for itemset, count in frequent_itemsets.items():

76. print(set(itemset), ":", count)

References

 [1] Han and M. Kamber, “ Data Mining Tools and Technique s”, Morgan Kaufmann Publishers. Page 237

 M.H. Dunham, “ Data Mining Introductory and Adv anced Topics”, Pear son Education.[2]

