

جامعة المستقبل
AL MUSTAQL UNIVERSITY

كلية العلوم
قسم الانظمة الطبية الذكية

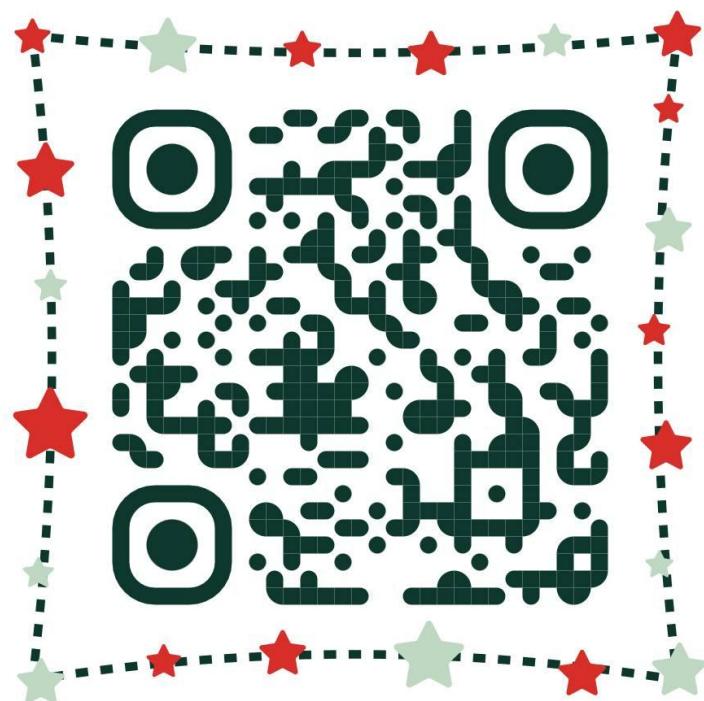
Lecture (5)

MATRICES AND DETERMINANTS

المادة : رياضيات

المرحلة : الاولى

اسم الاستاذ: م.م رياض ثائر احمد



<https://classroom.google.com/c/ODM3NjM4NTg2MzY3?cjc=k7kgjyvz>

Matrices and Determinants

A matrix is a rectangular array of elements (scalars) from a field. The order, or size, of a matrix is specified by the number of rows and the number of columns, i.e. A an “ m by n ” matrix has m rows and n columns, and the element in the i th row and j th column is often denoted by a_{ij} :

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

A vector is a matrix with a single row (or column) of n elements, i.e. the column vector is:-

$$A = \begin{bmatrix} a_1 \\ a_2 \\ \cdot \\ \cdot \\ a_n \end{bmatrix} \quad \text{and row vector is} \quad A = [a_1 \ a_2 \ \cdot \ \cdot \ a_n]$$

The matrix is square if the number of rows and columns are equal (i.e. $m = n$) and the elements a_{ij} of a square matrix are called the main diagonal.

The identity matrix: $I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ is square matrix

with one in each main diagonal position and zeros else.

The diagonal matrix $D = \begin{bmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_n \end{bmatrix}$ has the elements a_1, a_2, \dots, a_n in its main diagonal position and zeros in all other locations, some of the a_i may be zero but not all.

A $n \times n$ triangular matrix has the pattern:-

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

lower triangular matrix

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

upper triangular matrix

The $m \times n$ null matrix:- $\theta = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}$ has zero in each of its positions.

Elementary operations with matrices and vectors

1. Equality:- Two $m \times n$ matrices and A and B are said to be equal if: $a_{ij} = b_{ij} \quad \forall$ pairs of i and j .

EX-1 – Find the values of x, y for the following matrix equation:

$$\begin{bmatrix} x-2y & 0 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ -2 & x+y \end{bmatrix}$$

Sol. –

$$\begin{array}{l} x - 2y = 3 \\ x - 2y = 3 \quad \dots \dots (1) \\ x + y = 6 \quad \dots \dots (2) * 2 \end{array} \Rightarrow \begin{array}{l} 2x + 2y = 12 \\ 3x = 15 \Rightarrow [x = 5] \end{array}$$

substitution $x = 5$ in (2) $\Rightarrow 5 + y = 6 \Rightarrow [y = 1]$

2. Addition:- The sum of two matrices of like dimensions is the matrix of the sum of the corresponding elements. If:-

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$

then

$$A \mp B = \begin{bmatrix} a_{11} \mp b_{11} & a_{12} \mp b_{12} & \dots & a_{1n} \mp b_{1n} \\ a_{21} \mp b_{21} & a_{22} \mp b_{22} & \dots & a_{2n} \mp b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} \mp b_{m1} & a_{m2} \mp b_{m2} & \dots & a_{mn} \mp b_{mn} \end{bmatrix}$$

thus:

- 1) $A+B = B+A$
- 2) $A+(B+C) = (A+B)+C$
- 3) $A-(B-C) = A-B+C$

EX-2- Find $A+B$ and $A-B$ if:-

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 & 2 \\ 2 & 3 & -1 \end{bmatrix}$$

Sol.-

$$A + B = \begin{bmatrix} 2+1 & 1-2 & 3+2 \\ 1+2 & 0+3 & -2-1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 5 \\ 3 & 3 & -3 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 2-1 & 1-(-2) & 3-2 \\ 1-2 & 0-(+3) & -2-(-1) \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 \\ -1 & -3 & -1 \end{bmatrix}$$

3. Multiplication by a scalar:- The matrix A is multiplied by the scalar C by multiplying each element of A by c :-

$$CA = \begin{bmatrix} ca_{11} & ca_{12} & \dots & ca_{1n} \\ ca_{21} & ca_{22} & \dots & ca_{2n} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ ca_{m1} & ca_{m2} & \dots & ca_{mn} \end{bmatrix}$$

EX-3- Assume $A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 5 & -1 \end{bmatrix}$, find $3A$.

Sol.-

$$3A = \begin{bmatrix} 3*3 & 3*2 & 3*1 \\ 3*0 & 3*5 & 3*(-1) \end{bmatrix} = \begin{bmatrix} 9 & 6 & 3 \\ 0 & 15 & -3 \end{bmatrix}$$

4. Matrix multiplication:- For the matrix product AB to be defined it is necessary that the number of columns of A be equal to the number of rows of B . The dimensions of such matrices are said to be conformable. If A is of dimensions $m \times p$ and B is $p \times n$, then the ij th element of the product $C=AB$ is computed as:-

$$C_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$$

This is the sum of the products of corresponding elements in the i th row of A and j th column of B . The dimensions of AB are of course $m \times n$.

EX-4- Assume $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 5 & 4 \\ -1 & 1 & -1 \\ 0 & 2 & 0 \end{bmatrix}$ find AB .

Sol.-

$$\begin{aligned} AB &= \begin{bmatrix} 1*6+2(-1)+3*0 & 1*5+2*1+3*2 & 1*4+2(-1)+3*0 \\ -1*6+0(-1)+1*0 & -1*5+0*1+1*2 & -1*4+0(-1)+1*0 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 13 & 2 \\ -6 & -3 & -4 \end{bmatrix} \end{aligned}$$

Properties of multiplication:-

- a) $A(B + C) = AB + AC$ *distributive law*
- b) $A(BC) = (AB)C$ *associative law*
- c) $AB \neq BA$ *commutative law does not hold*
- d) $AI = IA = A$

EX-5- Assume $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$, verify that $AB \neq BA$.

Sol.-

$$AB = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 6 & 3 \end{bmatrix} \quad \& \quad BA = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 2 & 7 \end{bmatrix}$$

Hence $AB \neq BA$

5. Transpose of matrix:- Let A is any $m \times n$ matrix the transpose of A is $n \times m$ matrix A' formed by interchanging the role of rows and columns.

$$A' = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}' = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$

If a matrix is square and equal to its transpose, it is said to be symmetric, then $a_{ij} = a_{ji}$ for all pairs of i and j .

Properties of transpose are:-

- a) $(A \mp B)' = A' \mp B'$
- b) $(AB)' = B'A'$
- c) $(A')' = A$

EX-6- Assume $A = \begin{bmatrix} 3 & 2 & 5 \\ 2 & -1 & 4 \\ 5 & 4 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 & 0 \\ 5 & 4 & 3 \\ 2 & 1 & -1 \end{bmatrix}$, show that:-

- 1) A is symmetric matrix
- 2) $(A + B)' = A' + B'$
- 3) $(AB)' = B'A'$

Sol.-

$$1) A' = \begin{bmatrix} 3 & 2 & 5 \\ 2 & -1 & 4 \\ 5 & 4 & 0 \end{bmatrix}' = \begin{bmatrix} 3 & 2 & 5 \\ 2 & -1 & 4 \\ 5 & 4 & 0 \end{bmatrix} = A \Rightarrow A \text{ is a symmetric matrix.}$$

$$2) L.H.S. = (A+B)' = \begin{bmatrix} 7 & 1 & 5 \\ 7 & 3 & 7 \\ 7 & 5 & -1 \end{bmatrix}' = \begin{bmatrix} 7 & 7 & 7 \\ 1 & 3 & 5 \\ 5 & 7 & -1 \end{bmatrix}$$

$$R.H.S. = A' + B' = \begin{bmatrix} 3 & 2 & 5 \\ 2 & -1 & 4 \\ 5 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 5 & 2 \\ -1 & 4 & 1 \\ 0 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 7 & 7 & 7 \\ 1 & 3 & 5 \\ 5 & 7 & -1 \end{bmatrix} = L.H.S.$$

$$\therefore (A+B)' = A' + B'$$

$$3) L.H.S. = (AB)' = \begin{bmatrix} 32 & 10 & 1 \\ 11 & -2 & -7 \\ 40 & 11 & 12 \end{bmatrix}' = \begin{bmatrix} 32 & 11 & 40 \\ 10 & -2 & 11 \\ 1 & -7 & 12 \end{bmatrix}$$

$$R.H.S. = B'A' = \begin{bmatrix} 4 & 5 & 2 \\ -1 & 4 & 1 \\ 0 & 3 & -1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 5 \\ 2 & -1 & 4 \\ 5 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 32 & 11 & 40 \\ 10 & -2 & 11 \\ 1 & -7 & 12 \end{bmatrix} = L.H.S.$$

$$\therefore (AB)' = B'A'$$