
Lecture 6 – Part 2
Monte Carlo Simulation

Instructor: Assistant Lecturer Hadi Salah Hadi

1 Review: Idea of Monte Carlo Simulation

Monte Carlo simulation is a numerical method for approximating probabilities and ex-
pectations using random sampling.

1. Define the probabilistic model of the system or experiment.

2. Generate a large number of independent trials (simulated experiments).

3. For each trial, check whether the event of interest occurs.

4. Estimate the probability

p̂ =
Number of successes

Total number of trials N
.

As N increases, the estimate p̂ converges to the true probability by the Law of Large
Numbers.

2 Example 1: Sum of Two Dice Greater than 8

Problem

Two fair dice are thrown. Let
S = X1 +X2.

Find the probability that the sum is greater than 8:

P (S > 8).

Classical Solution

• Total number of outcomes: 6× 6 = 36.

• Favourable outcomes with sum > 8:
(3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6).
Number of favourable outcomes is 10.

Thus,

P (S > 8) =
10

36
≈ 0.2778.
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Monte Carlo Algorithm

1. Choose a large number of trials, e.g. N = 100,000.

2. For each trial, generate two random integers between 1 and 6.

3. Compute their sum and check whether it is greater than 8.

4. Let L be the number of trials with S > 8.

5. Estimate p̂ = L/N .

Python Code

Code

import numpy as np

N = 100_000

# Generate N pairs of random integers between 1 and 6

x = np.random.randint(1, 7, size=(2, N)) # shape: (2, N)

# Sum of each trial

sums = x.sum(axis=0)

# Count number of sums greater than 8

L = np.sum(sums > 8)

# Monte Carlo estimate

p_hat = L / N

print("Estimated P(S > 8) =", p_hat)

Sample Output (will vary slightly):

Estimated P(S > 8) = 0.27851

3 Example 2: At Least One 5 Appears

Problem

Two fair dice are thrown. Find the probability that at least one die shows 5.

Classical Solution

Let A be the event “at least one 5 appears”. Consider the complement:

• Ac: “no 5 appears”.

• Probability that a single die is not 5 is 5/6.
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• For two independent dice,

P (Ac) =

(
5

6

)2

=
25

36
.

• Hence

P (A) = 1− P (Ac) = 1− 25

36
=

11

36
≈ 0.3056.

Monte Carlo Algorithm

1. Choose N = 200,000.

2. For each trial, generate two random integers between 1 and 6.

3. Check if at least one of them equals 5.

4. Let s be the number of successful trials.

5. Estimate P (A) ≈ s/N .

Python Code (Loop Version)

Code

import numpy as np

N = 200_000

x = np.random.randint(1, 7, size=(2, N))

s = 0 # counter of successes

for k in range(N):

if x[0, k] == 5 or x[1, k] == 5:

s += 1

p_hat = s / N

print("Estimated P(at least one 5) =", p_hat)

Sample Output:

Estimated P(at least one 5) = 0.30489

Python Code (Vectorized Version)

Code

# Logical matrix: True where the die equals 5

y = (x == 5)

# For each trial j, c[j] is True if at least one die is 5

c = np.logical_or(y[0, :], y[1, :])

sm = np.sum(c)

p_hat_vec = sm / N

print("Vectorized estimate =", p_hat_vec)
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Sample Output:

Vectorized estimate = 0.30512

4 Example 3: Conditional Probability with Dice

Problem

Two fair dice are thrown. What is the probability that their sum is more than 8, given
that at least one die shows 6?

Let:

• A: “at least one die is 6”,

• B: “sum S > 8”.

We want P (B | A).

Classical Solution

By the definition of conditional probability,

P (B | A) = P (A ∩B)

P (A)
.

By counting outcomes:

• P (A) = 11/36 (all pairs with at least one 6),

• P (A ∩B) = 7/36 (pairs with at least one 6 and sum > 8).

Therefore,

P (B | A) = 7/36

11/36
=

7

11
≈ 0.6364.

Monte Carlo Algorithm

1. Generate N pairs of dice outcomes.

2. Event A: create a mask that is true when at least one die equals 6.

3. Select only those trials where A occurs.

4. Among these selected trials, count how many also satisfy B: sum > 8.

5. If the number of selected trials is n and the number of successes is s, estimate

̂P (B | A) = s

n
.
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Python Code

Code

import numpy as np

N = 100_000

x = np.random.randint(1, 7, size=(2, N))

# Event A: at least one die equals 6

has_six = np.logical_or(x[0, :] == 6, x[1, :] == 6)

# Select only trials where A occurs

y = x[:, has_six] # shape: (2, n)

n = y.shape[1] # number of selected trials

# Event B within the selected trials: sum > 8

sums_y = y.sum(axis=0)

success = np.sum(sums_y > 8)

p_cond = success / n

print("Estimated P(S > 8 | at least one 6) =", p_cond)

Sample Output:

Estimated P(S > 8 | at least one 6) = 0.63742

5 Characteristics of Monte Carlo Simulation in Medicine

Monte Carlo methods are very important in medical and health applications.

Main Characteristics

• Handles Uncertainty: Patient parameters (age, weight, organ function, etc.) are
not fixed; Monte Carlo allows sampling these quantities from probability distribu-
tions.

• Complex Systems: Many medical systems are too complex for closed-form solu-
tions (radiation transport, pharmacokinetics, patient flow). Monte Carlo can simu-
late these systems numerically.

• Full Distribution of Outcomes: Instead of giving a single number, Monte Carlo
provides a distribution (e.g. distribution of dose, waiting times, or blood pressure
after treatment).

• What-if Analysis: Easy to change input parameters and repeat the simulation
for different scenarios.

• Decision Support: Helps physicians and planners to analyze risks, compare treat-
ment strategies, and allocate resources.
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6 Medical Example: Drug Effect on Blood Pressure

Model

Consider a simple model for the effect of a drug on systolic blood pressure.

• Initial systolic blood pressure:

BP0 = 150 mmHg.

• The reduction in blood pressure due to the drug is a random variable

R ∼ N (µ = 15, σ = 8) mmHg,

where µ = 15 is the mean reduction and σ = 8 is the standard deviation.

• Final blood pressure after treatment:

BPafter = BP0 −R.

Goal: Estimate
P (110 ≤ BPafter ≤ 130),

the probability that the final blood pressure lies in the normal range [110, 130] mmHg.

Monte Carlo Algorithm

1. Choose N = 100,000 simulated patients.

2. For each patient:

• Generate a random response Ri from N (15, 82).

• Compute BPi = 150−Ri.

• Check whether 110 ≤ BPi ≤ 130.

3. Let L be the number of simulated patients with blood pressure in the normal range.

4. Estimate p̂ = L/N .

Python Code

Code

import numpy as np

N = 100_000 # number of simulated patients

BP0 = 150.0 # initial systolic blood pressure (mmHg)

mu = 15.0 # mean decrease (mmHg)

sigma = 8.0 # standard deviation of decrease

# Generate N random responses: R ~ Normal(mu, sigma^2)

R = np.random.normal(loc=mu, scale=sigma, size=N)
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# Final blood pressure after treatment

BP_after = BP0 - R

# Check normal range: 110 <= BP_after <= 130

normal_mask = (BP_after >= 110) & (BP_after <= 130)

L = np.sum(normal_mask)

# Monte Carlo estimate

p_normal = L / N

print("Estimated probability of normal BP =", p_normal)

Sample Output:

Estimated probability of normal BP = 0.62137
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