Lecture 6 — Part 2
Monte Carlo Simulation

Instructor: Assistant Lecturer Hadi Salah Hadi

1 Review: Idea of Monte Carlo Simulation

Monte Carlo simulation is a numerical method for approximating probabilities and ex-
pectations using random sampling.

1. Define the probabilistic model of the system or experiment.
2. Generate a large number of independent trials (simulated experiments).
3. For each trial, check whether the event of interest occurs.

4. Estimate the probability

Number of successes

p= Total number of trials N

As N increases, the estimate p converges to the true probability by the Law of Large
Numbers.

2 Example 1: Sum of Two Dice Greater than 8

Problem

Two fair dice are thrown. Let
S = X1 + XQ.

Find the probability that the sum is greater than 8:
P(S > 8).

Classical Solution

e Total number of outcomes: 6 x 6 = 36.

e Favourable outcomes with sum > 8:
(37 6)’ (47 5)7 (47 6)7 (5’ 4)7 (57 5)7 (57 6)7 (67 3)7 (67 4)7 (67 5)7 (67 6)

Number of favourable outcomes is 10.

Thus,

1
P(S > 8) = % ~ 0.2778.



Monte Carlo Algorithm
1. Choose a large number of trials, e.g. N = 100,000.

2. For each trial, generate two random integers between 1 and 6.
3. Compute their sum and check whether it is greater than 8.
4. Let L be the number of trials with S > 8.

5. Estimate p = L/N.

Python Code
Code

import numpy as np
N = 100_000

# Generate N pairs of random integers between 1 and 6
x = np.random.randint(1l, 7, size=(2, N)) # shape: (2, N)

# Sum of each trial
sums = x.sum(axis=0)

# Count number of sums greater than 8
L = np.sum(sums > 8)

# Monte Carlo estimate
p_hat =L / N
print ("Estimated P(S > 8) =", p_hat)

Sample Output (will vary slightly):

Estimated P(S > 8) = 0.27851

3 Example 2: At Least One 5 Appears

Problem
Two fair dice are thrown. Find the probability that at least one die shows 5.

Classical Solution
Let A be the event “at least one 5 appears”. Consider the complement:

e A¢ “no 5 appears”.

e Probability that a single die is not 5 is 5/6.



e For two independent dice,
2
Ay = (2) =2
6 36

25 11
P(A) =1 = P(A9) =1~ = = 2 ~ 0.3056.

e Hence

Monte Carlo Algorithm

1. Choose N = 200,000.
For each trial, generate two random integers between 1 and 6.
Check if at least one of them equals 5

Let s be the number of successful trials.

AN

Estimate P(A) ~ s/N.

Python Code (Loop Version)
Code

import numpy as np

N = 200_000
x = np.random.randint(1l, 7, size=(2, N))
s = 0 # counter of successes

for k in range(N):
if x[0, k] == 5 or x[1, k] == 5:
s += 1

p_hat = s / N

print ("Estimated P(at least one 5) =", p_hat)
Sample Output:

Estimated P(at least one 5) = 0.30489

Python Code (Vectorized Version)
Code

# Logical matrix: True where the die equals 5
y = (X == 5)

# For each trial j, c[j] is True if at least one die is 5
¢ = np.logical_or(y[0, :1, y[1, :1)

sm = np.sum(c)

p_hat_vec = sm / N
print ("Vectorized estimate =", p_hat_vec)
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Sample Output:

Vectorized estimate = 0.30512

4 Example 3: Conditional Probability with Dice

Problem

Two fair dice are thrown. What is the probability that their sum is more than 8, given

that at least one die shows 67
Let:

o A: “at least one die is 67,
e [B: “sum S > 8”.

We want P(B | A).

Classical Solution

By the definition of conditional probability,
P(B[A)=

By counting outcomes:
e P(A) =11/36 (all pairs with at least one 6),
e P(AN B) = T7/36 (pairs with at least one 6 and sum > 8).

Therefore,

7/36 7
P(B|A)=—“_— = — ~0.6364.
(B14) 1136 11~ 0630

Monte Carlo Algorithm
1. Generate N pairs of dice outcomes.
2. Event A: create a mask that is true when at least one die equals 6.
3. Select only those trials where A occurs.
4. Among these selected trials, count how many also satisfy B: sum > 8.

5. If the number of selected trials is n and the number of successes is s, estimate

P(B[A) =

S
0 .



Python Code
Code

import numpy as np

N
X

100_000
np.random.randint (1, 7, size=(2, N))

# Event A: at least one die equals 6
has_six = np.logical_or(x[0, :] == 6, x[1, :] == 6)

# Select only trials where A occurs
y = x[:, has_six] # shape: (2, n)
n = y.shape[1] # number of selected trials

# Event B within the selected trials: sum > 8
sums_y = y.sum(axis=0)
success = np.sum(sums_y > 8)

p_cond = success / n
print("Estimated P(S > 8 | at least one 6) =", p_cond)

Sample Output:

Estimated P(S > 8 | at least one 6) = 0.63742

5 Characteristics of Monte Carlo Simulation in Medicine

Monte Carlo methods are very important in medical and health applications.

Main Characteristics

e Handles Uncertainty: Patient parameters (age, weight, organ function, etc.) are
not fixed; Monte Carlo allows sampling these quantities from probability distribu-
tions.

e Complex Systems: Many medical systems are too complex for closed-form solu-
tions (radiation transport, pharmacokinetics, patient flow). Monte Carlo can simu-
late these systems numerically.

e Full Distribution of Outcomes: Instead of giving a single number, Monte Carlo
provides a distribution (e.g. distribution of dose, waiting times, or blood pressure
after treatment).

e What-if Analysis: Easy to change input parameters and repeat the simulation
for different scenarios.

e Decision Support: Helps physicians and planners to analyze risks, compare treat-
ment strategies, and allocate resources.



6 Medical Example: Drug Effect on Blood Pressure

Model

Consider a simple model for the effect of a drug on systolic blood pressure.

e Initial systolic blood pressure:

BPy = 150 mmHg.

e The reduction in blood pressure due to the drug is a random variable
R~ N(u =15, 0 =8) mmHg,
where p = 15 is the mean reduction and o = 8 is the standard deviation.

e Final blood pressure after treatment:

BPafter = BPy — R.

Goal: Estimate
P(110 < BPyger < 130),

the probability that the final blood pressure lies in the normal range [110, 130] mmHg.

Monte Carlo Algorithm
1. Choose N = 100,000 simulated patients.

2. For each patient:

e Generate a random response R; from N(15,8%).
e Compute BP; = 150 — R;.
e Check whether 110 < BP; < 130.

3. Let L be the number of simulated patients with blood pressure in the normal range.

4. Estimate p = L/N.

Python Code
Code

import numpy as np

N = 100_000 # number of simulated patients

BPO = 150.0 # initial systolic blood pressure (mmHg)
mu = 15.0 # mean decrease (mmHg)

sigma = 8.0 # standard deviation of decrease

# Generate N random responses: R ~ Normal(mu, sigma”2)
R = np.random.normal (loc=mu, scale=sigma, size=N)
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# Final blood pressure after treatment
BP_after = BPO - R

# Check normal range: 110 <= BP_after <= 130
normal_mask = (BP_after >= 110) & (BP_after <= 130)
L = np.sum(normal_mask)

# Monte Carlo estimate
p_normal =L / N
print ("Estimated probability of normal BP =", p_normal)

Sample Output:

Estimated probability of normal BP = 0.62137



