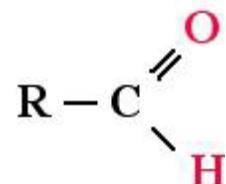

Carbohydrates tests

Introduction:


The word carbohydrate is formed from the words carbon and hydrogen. Carbohydrates are combinations of the chemical elements carbon and hydrogen plus oxygen. In the natural world, carbohydrates are the most common chemical compounds used for food. Carbohydrates are the most abundant and diverse class of organic compounds occurring in nature. It played a key role in the establishment and evolution of life on earth by creating a direct link between the sun and chemical energy. Carbohydrates are the key source of energy used by living things.

- Also serve as extracellular structural elements as in cell wall of bacteria and plant. Carbohydrates are defined as the polyhydroxy aldehydes or polyhydroxy ketones.
- Most, but not all carbohydrate have a formula $(CH_2O)_n$ (hence the name hydrate of carbon)
- In human body, the D-glucose is used.
- Simple sugars end with -ose.

Ketone
Group

Aldehyde
Group

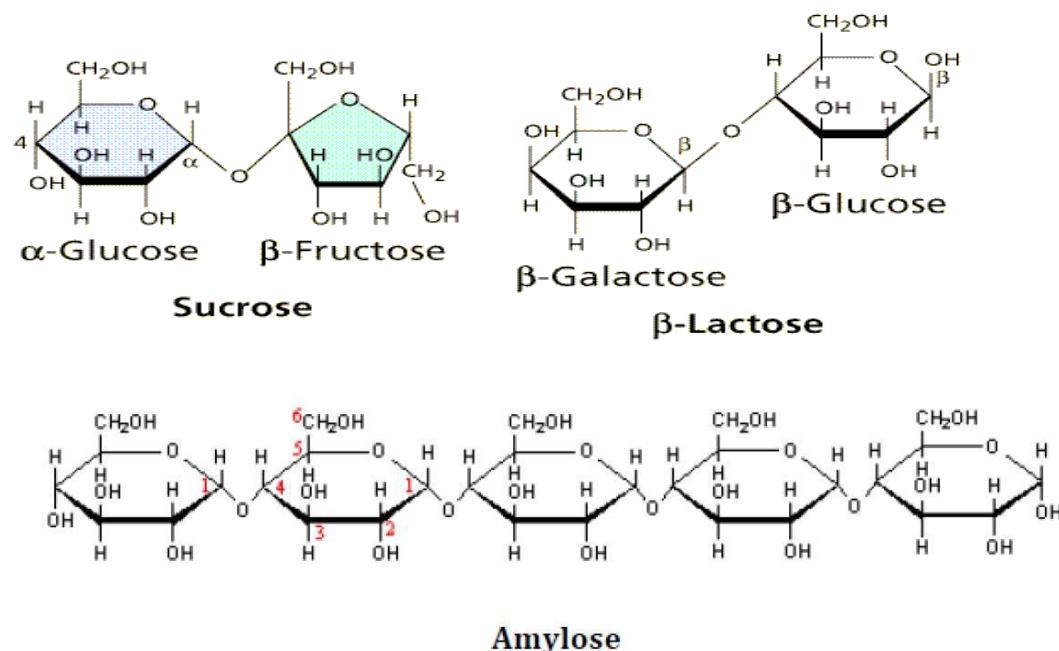
Several classifications of carbohydrates have proven useful, and are outlined in the following table.

Complexity	Simple Carbohydrates		Complex Carbohydrates	
	monosaccharides		disaccharides, oligosaccharides & polysaccharides	
Size	Tetrose	Pentose	Hexose	Heptose
	C ₄ sugars	C ₅ sugars	C ₆ sugars	C ₇ sugars etc.
C=O Function	Aldose sugars having an aldehyde function or an acetal equivalent.		Ketose sugars having a ketone function or an acetal equivalent.	
Reactivity	Reducing sugars oxidized by Tollens' reagent (or Benedict's or Fehling's reagents).		Non-reducing sugars not oxidized by Tollens' or other reagents.	

Classification:

1-Simple sugar (one unit) :

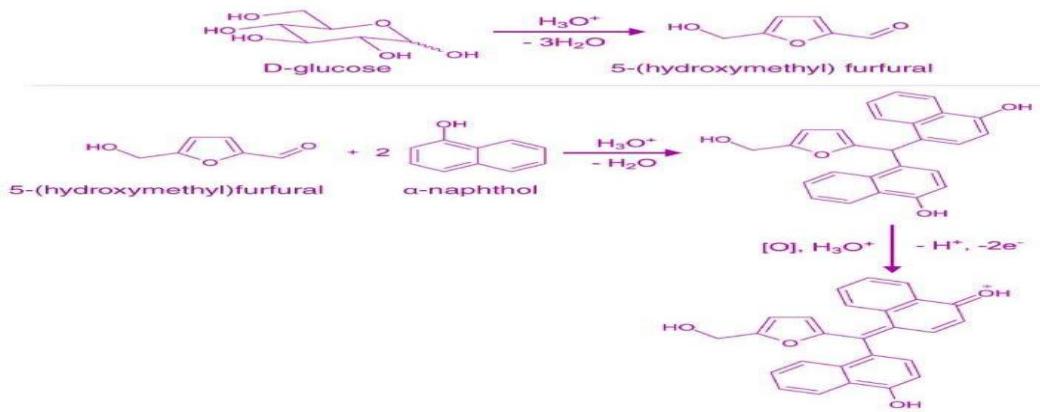
Monosaccharides contain one monosaccharides unit


2-Complex sugar (more than one) :

•Disaccharides contain two monosaccharide units.

•Oligosaccharides contain 3-9 monosaccharide units.

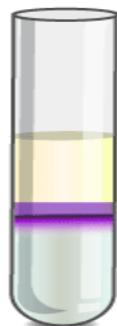
•Polysaccharides can contain more than 9 monosaccharide units.


-Complex carbohydrates can be broken down into smaller sugar units through a process known as hydrolysis.

Molisch Test: specific for carbohydrates.

Molisch test: Molisch's test is a chemical test which is used to check for the presence of carbohydrates in a given analyte. This test is named after Czech-Austrian botanist Hans Molisch, who is credited with its discovery. Molisch's test involves the addition of Molisch's reagent (a solution of α -naphthol in ethanol) to the analyte and the subsequent addition of a few drops of concentrated H_2SO_4 (sulphuric acid) to the mixture. The formation of a purple or a purplish-red ring at the point of contact between the H_2SO_4 and the analyte + Molisch's reagent mixture confirms the presence of carbohydrates in the analyte. This test is specific for all

carbohydrates Monosaccharide gives a rapid positive test, Disaccharides and polysaccharides react slower.



Objective: To identify the carbohydrate from other macromolecules, lipids and proteins. **Principle:** In Molisch's test, the carbohydrate (if present) undergoes dehydration upon the introduction of concentrated hydrochloric or sulphuric acid, resulting in the formation of an aldehyde. This aldehyde undergoes condensation along with two phenol-type molecules (such as α -naphthol, resorcinol, and thymol), resulting in the formation of a purple or reddish-purple colored complex.

- The test reagent(H_2SO_4) dehydrates pentose to form furfural and dehydrates hexoses to form 5- hydroxymethyl furfural
- The furfural and 5-hydroxymethyl furfural further react with α -naphthol present in the test reagent to produce a purple ring.

Method:

1. 2-3 drops of Molisch's reagent (which α -naphthol in 95% ethanol) must be added to a small amount of the analyte in a test tube and mixed well.
2. few drops of concentrated sulphuric acid must be added dropwise along the walls of the test tube to facilitate the formation of a layer and avoid mixing. The development of a purple ring at the layer formed by the concentrated acid is a positive indicator for Molisch's test. If no purple or reddish-purple colour arises, the given analyte does not contain any carbohydrate.

The formation of a purple ring is a positive indicator for Molisch's Test