

Department of biology

Department of Biology

2025-2026

((Analytical Chemistry))

Stage (-1-)

LEC- ((3))

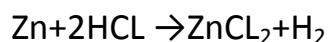
Chemical Equilibria

By

Haider Mutlak

Introduction

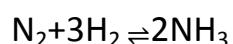
Chemical Equilibrium


Chemical equilibrium occurs in reversible reactions when the forward and backward reactions proceed at the same rate, so the concentrations of reactants and products remain constant.

Reaction Types

1-Irreversible Reaction

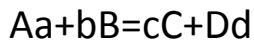
Reaction proceeds only in one direction.


Example:

2-Reversible Reaction

Reaction occurs in both forward and backward directions.

Example:


Department of biology

Dynamic Equilibrium

$$\text{Rate}_{\text{forward}} = \text{Rate}_{\text{backward}}$$

Equilibrium Constant (Kc)

$$Kc = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$Kc > 1 \rightarrow$ Products favored

$Kc < 1 \rightarrow$ Reactants favored

Reaction Rate

$$\text{Rate} = \frac{\Delta(A)}{\Delta t}$$

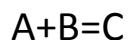
Where: $\Delta(A) = [A]_{\text{initial}} - [A]_{\text{final}}$

Problem 1 – Irreversible reaction

$[A]$ decreases from 0.80 M to 0.40 M in 20 s

Calculate the rate.

Department of biology


Solution:

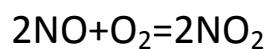
$$\text{Rate} = \frac{\Delta(A)}{\Delta t}$$

$$\text{Rate} = \frac{0.8 - 0.4}{20}$$

$$\text{Rate} = 0.02 \text{M/S}$$

Problem 2 – Reversible reaction, reactants greater

Calculate K_c and predict side favored


Giving $[A] = [B] = 0.5$, $[C] = 0.2$

Solution:

$$K_c = \frac{[C]}{[A][B]}$$

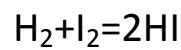
$$K_c = \frac{[0.2]}{[0.5][0.5]} = 0.8$$

Problem 3 – Reversible reaction, products greater

Question: Calculate K_c

Giving: $\text{NO}_2 = 0.3$ $\text{NO} = 0.1$ $\text{O}_2 = 0.05$

Solution /


$$K_c = \frac{[\text{NO}_2]^2}{[\text{NO}]^2[\text{O}_2]}$$

Department of biology

Problem 4 – Unknown product

Where: $K_C = 4$ $[H_2] = [I_2] = 0.2$

Find $[HI]$

Solution /

$$[HI] = 0.4 \text{ M} \cdot$$