

Department of biology

Department of Biology

2025-2026

((Microbial Physiology))

Stage (-3-)

LEC- ((8))

Nitrogen fixation

By

Asst.Lec Dhuha.s. Al-khafaji

Nitrogen fixation

is a process by which molecular [nitrogen](#) in the [air](#) is converted into [ammonia](#) (NH_3) or related nitrogenous compounds in soil. Atmospheric nitrogen is molecular [nitrogen](#), a relatively nonreactive molecule that is metabolically useless to all but a few microorganisms. Biological nitrogen fixation converts N_2 into ammonia, which is metabolized by most organisms.

Nitrogen fixation is essential to life because fixed inorganic nitrogen compounds are required for the [biosynthesis](#) of all nitrogen-containing [organic compounds](#), such as [amino acids](#) and [proteins](#), [nucleoside triphosphates](#) and [nucleic acids](#). As part of the [nitrogen cycle](#), it is essential for [agriculture](#) and the manufacture of [fertilizer](#). It is also, indirectly, relevant to the manufacture of all nitrogen chemical compounds, which includes some explosives, pharmaceuticals and dyes.

Nitrogen fixation is carried out naturally in [soil](#) by [microorganisms](#) termed [diazotrophs](#) that include [bacteria](#) such as [Azotobacter](#) and [archaea](#). Some nitrogen-fixing bacteria have [symbiotic](#) relationships with [plant](#) groups, especially [legumes](#). Looser non-symbiotic relationships between diazotrophs and plants are often referred to as associative, as seen in nitrogen fixation on [rice](#) roots. Nitrogen fixation occurs between some [termites](#) and [fungi](#). It occurs naturally in the air by means of [NOx](#) production by [lightning](#).

Department of biology

All biological nitrogen fixation is effected by enzymes called [nitrogenases](#), which actually an enzyme complex consisting of dinitrogenase reductase and dinitrogenase , which are highly conserved, O₂-sensitive enzymes working in tandem to reduce N₂. Nitrogenase is somewhat nonspecific with respect to substrate, so it will also reduce H⁺ to H₂, N₂O to N₂, and C₂H₂ to C₂H₄

All nitrogenases have an iron – and sulfur-containing cofactor that includes a heterometal complex in the active site . In most species, this heterometal complex has a central molybdenum atom. However, in some species it is replaced by a vanadium or iron atom. Enzymes responsible for nitrogenase action are very susceptible to destruction by oxygen. Many bacteria cease production of the enzyme in the presence of oxygen.

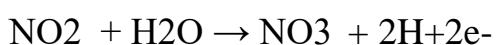
The nitrogen-fixing organisms: All the nitrogen-fixing organisms are prokaryotes (bacteria). Some of them live independently of other organisms - the so-called free-living nitrogen-fixing bacteria. Others live in intimate symbiotic associations with plants or with other organisms (e.g. protozoa). Examples are shown in the table below.

Examples of nitrogen-fixing bacteria

Free living		Symbiotic with plants	
Aerobic	Anaerobic	Legumes	Other plants
<i>Zotobacter</i>	<i>clostridium</i> (some)	<i>rhizobium</i>	<i>Frankia</i>
<i>Beijerinckia</i>	<i>Desulfovibrio</i>		<i>Azospirillum</i>
<i>Klebsiella</i> (some)	Purple sulphur bacteria*		
<u>Cyanobacteria</u> (some)	Purple non-sulphur bacteria*		

Department of biology

	Green sulphur bacteria*		
--	-------------------------	--	--

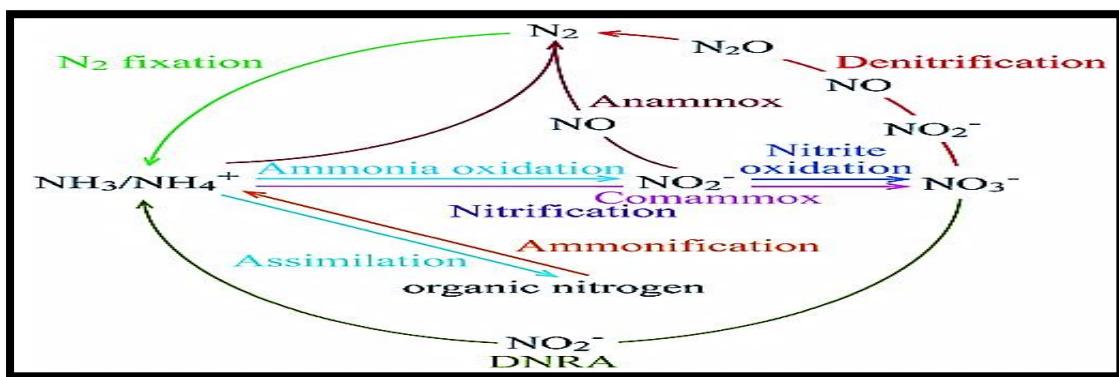

Nitrification and Denitrification

Nitrification is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate. The transformation of ammonia to nitrite is usually the rate limiting step of nitrification. Nitrification is an important step in the nitrogen cycle in soil. Nitrification is an aerobic process performed by small groups of autotrophic bacteria and archaea. Nitrogen occurs in waste water usually as ammonium (NH_4^+) or bonded in organic compounds. Organically bonded nitrogen is transformed into ammonium when these compounds are depleted by microorganisms.

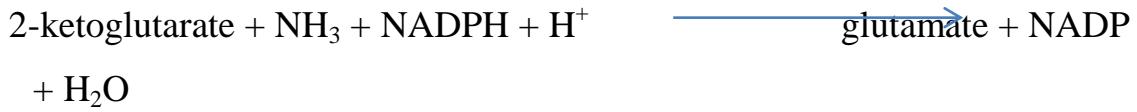
In the first step of nitrification, ammonia-oxidizing bacteria oxidize ammonia to nitrite according to equation .

Nitrosomonas is the most frequently identified genus associated with this step, although other genera, including *Nitrosococcus*, and *Nitrosospira*. Some subgenera, *Nitrosolobus* and *Nitrosovibrio*, can also autotrophically oxidize ammonia . In the second step of the process, nitrite-oxidizing bacteria oxidize nitrite to nitrate according to equation .

Denitrification is a microbially facilitated process where nitrate (NO_3^-) is reduced and ultimately produces molecular nitrogen (N_2) through a series


Department of biology

of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitrification as a type of respiration that reduces oxidized forms of nitrogen in response to the oxidation of an electron donor such as organic matter. Denitrifying microbes require a very low oxygen concentration of less than 10%, as well as organic C for energy


Denitrification generally proceeds through some combination of the following half reactions, with the enzyme catalyzing the reaction in parentheses:

- $\text{NO}_3^- + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{NO}_2^- + \text{H}_2\text{O}$ (Nitrate reductase)
- $\text{NO}_2^- + 2 \text{H}^+ + \text{e}^- \rightarrow \text{NO} + \text{H}_2\text{O}$ (Nitrite reductase)
- $2 \text{NO} + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$ (Nitric oxide reductase)
- $\text{N}_2\text{O} + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{N}_2 + \text{H}_2\text{O}$ (Nitrous oxide reductase)

Ammonia assimilation :Ammonia is assimilated as glutamate by different reactions:

glutamate dehydrogenase

Department of biology

glutamine synthetase

glutamate synthase

At a high ammonia concentration, glutamate dehydrogenase can assimilate ammonia without consuming ATP since this enzyme has a low affinity for the substrate . ATP is consumed in the assimilation of ammonia at low concentrations by the action of glutamine synthetase which has a high substrate affinity . In *Escherichia coli*, about 85% of organic nitrogen originates from glutamate and the remaining 15% arises from glutamine.