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PushDown Automata (PDA) 

A PDA is a collection of eight things: 

1- An alphabet Σ of input letters. 

2- An input TAPE (infinite in one direction). Initially the string of input letters is 

placed on the TAPE starting in cell i. The rest of the TAPE is blanks. 

3- An alphabet Г of STACK characters. 

4- A pushdown STACK (infinite in one direction). Initially the STACK is empty 

(contains all blanks) 

5- One START state that has only out_adges, no in-edges. 

6- HALT states of two kinds: some ACCEPT and some REJECT they have 

inedges and no out-edges. 

 

 

7- Finitely many non-branching PUSH states that introduce characters onto the 

top of the STACK. they are of the form: 

 

Where X is any letter in Γ. 

8- Finitely many branching states of two kinds: 

a) States that read the next unused letter from the TAPE. 

 

Which may have out-edges labeled with letters from Σ and the blank character Δ, with 

no restrictions on duplication of labels and no insistence that there be a label for each 

letter of Σ, or Δ 
 

 

PUSH X 

 

READ 

START 

ACCEPT REJECT 
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b) States that read the top character of STACK. 

Which may have out-edges labeled with letters from  and the blank 

character Δ, again with no restrictions. 

 Note: we require that the states be connected so as to become a connected 

directed graph. 

 

Theorem 

For every regular language L there is some PDA that accepts it. 

 

Poof 

Since L is regular, so it is accepted by some FA, then we can convert FA to PDA (as 

in the following example). 

Example: 

The FA that used to be drawn like this: 
 

 

(the FA that accepts all words ending in the letter a) becomes, in the new symbolism, 

the machine below: 

 

POP 
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Example: 
 

Becomes: 
 

 

Example: The language accepted by this PDA is exactly: {anbn, n = 0, 1, 2, …} 

 

  
 

Before we begin to analyze this machine in general, let us see it in operation on 

the input string aaabbb. We begin by assuming that this string has been put on the 

TAPE. We always start the operation of the PDA with the STACK empty as 

shown: 

TAPE 

 

We have to PUSH the first part of string into the STACK and then POP contents 

of the STACK when we start reading the second part of the string. For example, 

aaabbb  We will PUSH all "aaa" into the stack then we will POP when we start 

reading "bbb". 
 

a a a b b b 
 

 … 
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We can divide string reading into two stages. When we get the first part "aaa" we 

will PUSH them into the STACK, and when we read the second part "bbb" we 

will POP from the stack. We should get "aaa" and the STACK will be empty and 

the string is reached to the space symbol, so if we read the space symbol we have 

to POP from the stack, if we get space symbol that is means the string is accepted. 
 

State Stack Tape 

START Δ aaabbbΔ 

READ        Δ    aaabbbΔ      

  PUSH a     aΔ       aaabbbΔ 

READ aΔ aaabbbΔ               

PUSH a       aaΔ          aaabbbΔ 

READ aaΔ aaabbbΔ  

PUSH a       aaaΔ aaabbbΔ 
 

 
 

 Note: The Type of PDA above is called deterministic PDA is one (like the 

pictures we drew above) for which every input string has a unique path through 

the machine. 

READ aaaΔ aaabbbΔ 

POP aaΔ aaabbbΔ 

READ aaΔ aaabbbΔ 

POP aΔ aaabbbΔ 

READ aΔ aaabbbΔ 

POP Δ aaabbbΔ 

READ Δ aaabbb𝚫 

POP 

ACCEPT 

- aaabbb𝚫 
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Example: Consider the palindrome X, language of all words of the form: 

sXreverese(s), where s is any string in (a+b)*, such as: 

{X, aXa, bXb, aaXaa, abXba, aabXbaa, …} 

 

 

In the first part of machine, the STACK is loaded with the letters from the input 

string just as the initial a's from anbn were pushed onto the STACK. 

Conveniently for us, the letters go into the STACK first letter on the bottom, 

second letter on top of it, and so on till the last letter pushed in ends up on top. 

When we read the X we know we have reached the middle of the input. We can 

then begin to compare the front half of the word (which is reversed in the STACK) 

with the back half (still on the TAPE) to see that they match. We begin by storing 

the front half of the input string in the STACK with this part of the machine. 
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If we READ an a, we PUSH an a. If we READ a b, we PUSH a b, and on and on 

until we encounter the X on the TAPE. 

After we take the first half of the word and stick it into the STACK, we have 

reversed the order of the letters and it looks exactly like the second half of the 

word. For example, if we begin with the input string 

 

abbXbba 

then at the moment we are just about to read the X we have: 

 

When we read the X we do not put it into the STACK. It is used up in the process 

of transferring us to phase two. This is where we compare what is left on the 

TAPE with what is in the STACK. In order to reach ACCEPT, these two should 

be the same letter for letter, down to the blanks. 
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Example: ODDPALINDROME = {a, b, aaa, aba, bab, bbb, … } 

 

 

The problem here is that the middle letter does not stand out, so it is harder to 

recognize where the first half ends and the second half begins. In fact, it's not only 

harder; it's impossible. 

In PALINDROMEX we knew that X marked the spot; now we have lost our 

treasure map. If we accidentally push into the STACK even one letter too many, 

the STACK will be larger than what is left on the TAPE and the front and back 

will not match. The algorithm we used to accept PALINDROMEX cannot be used 

without modification to accept ODDPALINDROME. We are not completely lost, 

though. The algorithm can be altered to fit our needs by introducing one 

nondeterministic jump. 

For every word in ODDPALINDROME, if we make the right choices the path 

does lead to acceptance. 

The word “aba” can be accepted by this machine if it follows the dotted path: 
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State Stack Tape 

START Δ abaΔ 

READ 

PUSH a 

Δ 
    aΔ 

abaΔ  
aba Δ 

READ aΔ abaΔ 

READ aΔ abaΔ 

POP aΔ abaΔ 

READ Δ aba𝚫 

POP 

ACCEPT 

-  aba𝚫 

 

 

 

 

 

Example: EVENPALINDROME = {s reverse(s), where s is in (a + b)*}  

{∧, aa, bb, aaaa, abba, baab, babbab, bbbbaaaaaa, ... } 

 

We will check the string “babbab” is ACCEPT or not in the following machine: 
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State Stack Tape 

START Δ babbabΔ 

READ Δ babbabΔ 

 
PUSH b 

READ 

bΔ 

bΔ 

babbabΔ 

babbabΔ  

PUSH a        baΔ        babbabΔ 

READ baΔ babbabΔ 

PUSH b babΔ babbabΔ 

READ babΔ babbabΔ 

POP baΔ babbabΔ 

READ baΔ babbabΔ 

POP bΔ babbabΔ 

READ bΔ babbabΔ 

POP Δ babbabΔ 

READ Δ babbab𝚫 

POP 

ACCEPT 

- babbab𝚫 

 Note: The type of PDA above is called nondeterministic PDA is one for 

which at certain times we may have to choose among possible paths through the 

machine. 
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Homework: Consider the language generated by the CFG: 

S → S + S | S ∗ S | 4 The terminals are +, ∗, and 4 and the 

only nonterminal is S. 

- Is the string “4 + 4 ∗ 4” accept in the following PDA or not? 
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