
35

Computation Theory

مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ــــــــــس ــق
Department of Cyber Security

Subject: Computation Theory

Class: 3rd

Lecturer: Msc :Muntather AL-mussawee

Lecture: (8)
PushDown Automata (PDA)

Lecture Six

36

Computation Theory

PushDown Automata (PDA)

A PDA is a collection of eight things:

1- An alphabet Σ of input letters.

2- An input TAPE (infinite in one direction). Initially the string of input letters is

placed on the TAPE starting in cell i. The rest of the TAPE is blanks.

3- An alphabet Г of STACK characters.

4- A pushdown STACK (infinite in one direction). Initially the STACK is empty

(contains all blanks)

5- One START state that has only out_adges, no in-edges.

6- HALT states of two kinds: some ACCEPT and some REJECT they have

inedges and no out-edges.

7- Finitely many non-branching PUSH states that introduce characters onto the

top of the STACK. they are of the form:

Where X is any letter in Γ.

8- Finitely many branching states of two kinds:

a) States that read the next unused letter from the TAPE.

Which may have out-edges labeled with letters from Σ and the blank character Δ, with

no restrictions on duplication of labels and no insistence that there be a label for each

letter of Σ, or Δ

PUSH X

READ

START

ACCEPT REJECT

37

Computation Theory

b) States that read the top character of STACK.

Which may have out-edges labeled with letters from and the blank

character Δ, again with no restrictions.

 Note: we require that the states be connected so as to become a connected

directed graph.

Theorem

For every regular language L there is some PDA that accepts it.

Poof

Since L is regular, so it is accepted by some FA, then we can convert FA to PDA (as

in the following example).

Example:

The FA that used to be drawn like this:

(the FA that accepts all words ending in the letter a) becomes, in the new symbolism,

the machine below:

POP

Computation Theory

38

Example:

Becomes:

Example: The language accepted by this PDA is exactly: {anbn, n = 0, 1, 2, …}

Before we begin to analyze this machine in general, let us see it in operation on

the input string aaabbb. We begin by assuming that this string has been put on the

TAPE. We always start the operation of the PDA with the STACK empty as

shown:

TAPE

We have to PUSH the first part of string into the STACK and then POP contents

of the STACK when we start reading the second part of the string. For example,

aaabbb We will PUSH all "aaa" into the stack then we will POP when we start

reading "bbb".

a a a b b b

 …

Computation Theory

39

We can divide string reading into two stages. When we get the first part "aaa" we

will PUSH them into the STACK, and when we read the second part "bbb" we

will POP from the stack. We should get "aaa" and the STACK will be empty and

the string is reached to the space symbol, so if we read the space symbol we have

to POP from the stack, if we get space symbol that is means the string is accepted.

State Stack Tape

START Δ aaabbbΔ

READ Δ aaabbbΔ

 PUSH a aΔ aaabbbΔ

READ aΔ aaabbbΔ

PUSH a aaΔ aaabbbΔ

READ aaΔ aaabbbΔ

PUSH a aaaΔ aaabbbΔ

 Note: The Type of PDA above is called deterministic PDA is one (like the

pictures we drew above) for which every input string has a unique path through

the machine.

READ aaaΔ aaabbbΔ

POP aaΔ aaabbbΔ

READ aaΔ aaabbbΔ

POP aΔ aaabbbΔ

READ aΔ aaabbbΔ

POP Δ aaabbbΔ

READ Δ aaabbb𝚫

POP

ACCEPT

- aaabbb𝚫

40

Computation Theory

Example: Consider the palindrome X, language of all words of the form:

sXreverese(s), where s is any string in (a+b)*, such as:

{X, aXa, bXb, aaXaa, abXba, aabXbaa, …}

In the first part of machine, the STACK is loaded with the letters from the input

string just as the initial a's from anbn were pushed onto the STACK.

Conveniently for us, the letters go into the STACK first letter on the bottom,

second letter on top of it, and so on till the last letter pushed in ends up on top.

When we read the X we know we have reached the middle of the input. We can

then begin to compare the front half of the word (which is reversed in the STACK)

with the back half (still on the TAPE) to see that they match. We begin by storing

the front half of the input string in the STACK with this part of the machine.

Computation Theory

41

If we READ an a, we PUSH an a. If we READ a b, we PUSH a b, and on and on

until we encounter the X on the TAPE.

After we take the first half of the word and stick it into the STACK, we have

reversed the order of the letters and it looks exactly like the second half of the

word. For example, if we begin with the input string

abbXbba

then at the moment we are just about to read the X we have:

When we read the X we do not put it into the STACK. It is used up in the process

of transferring us to phase two. This is where we compare what is left on the

TAPE with what is in the STACK. In order to reach ACCEPT, these two should

be the same letter for letter, down to the blanks.

Computation Theory

42

Example: ODDPALINDROME = {a, b, aaa, aba, bab, bbb, … }

The problem here is that the middle letter does not stand out, so it is harder to

recognize where the first half ends and the second half begins. In fact, it's not only

harder; it's impossible.

In PALINDROMEX we knew that X marked the spot; now we have lost our

treasure map. If we accidentally push into the STACK even one letter too many,

the STACK will be larger than what is left on the TAPE and the front and back

will not match. The algorithm we used to accept PALINDROMEX cannot be used

without modification to accept ODDPALINDROME. We are not completely lost,

though. The algorithm can be altered to fit our needs by introducing one

nondeterministic jump.

For every word in ODDPALINDROME, if we make the right choices the path

does lead to acceptance.

The word “aba” can be accepted by this machine if it follows the dotted path:

Computation Theory

43

State Stack Tape

START Δ abaΔ

READ

PUSH a

Δ
 aΔ

abaΔ
aba Δ

READ aΔ abaΔ

READ aΔ abaΔ

POP aΔ abaΔ

READ Δ aba𝚫

POP

ACCEPT

- aba𝚫

Example: EVENPALINDROME = {s reverse(s), where s is in (a + b)*}

{∧, aa, bb, aaaa, abba, baab, babbab, bbbbaaaaaa, ... }

We will check the string “babbab” is ACCEPT or not in the following machine:

Computation Theory

44

State Stack Tape

START Δ babbabΔ

READ Δ babbabΔ

PUSH b

READ

bΔ

bΔ

babbabΔ

babbabΔ

PUSH a baΔ babbabΔ

READ baΔ babbabΔ

PUSH b babΔ babbabΔ

READ babΔ babbabΔ

POP baΔ babbabΔ

READ baΔ babbabΔ

POP bΔ babbabΔ

READ bΔ babbabΔ

POP Δ babbabΔ

READ Δ babbab𝚫

POP

ACCEPT

- babbab𝚫

 Note: The type of PDA above is called nondeterministic PDA is one for

which at certain times we may have to choose among possible paths through the

machine.

Computation Theory

45

Homework: Consider the language generated by the CFG:

S → S + S | S ∗ S | 4 The terminals are +, ∗, and 4 and the

only nonterminal is S.

- Is the string “4 + 4 ∗ 4” accept in the following PDA or not?

Computation Theory

46

	Theorem
	Poof
	Example:
	Example:

