Computation Theory

|"T: i
7L, £
6‘,9&/7} o 3

d L8 T all aeo AIA.
AL MUSTAQBAL UNIVERSITY
w ;I}f.l.ltl ” * 9

SUBJECT: COMPUTATION THEORY
CLASS: 3rd

LECTURER: MSC .MUNTATHER AL-MUSSAWEE

LECTURE: (8)
PusHDOWN AUTOMATA (PDA)

Lecture Six

[)

Computation Theory

PushDown Automata (PDA)

A PDA is a collection of eight things:

1- An alphabet X of input letters.

2- Aninput TAPE (infinite in one direction). Initially the string of input letters is
placed on the TAPE starting in cell 1. The rest of the TAPE is blanks.

3- An alphabet I' of STACK characters.

4- A pushdown STACK (infinite in one direction). Initially the STACK is empty
(contains all blanks)

5- One START state that has only out_adges, no in-edges.

6- HALT states of two kinds: some ACCEPT and some REJECT they have
inedges and no out-edges.

7- Finitely many non-branching PUSH states that introduce characters onto the
top of the STACK. they are of the form:

— PUSHX [—

Where X is any letter in I'.

8- Finitely many branching states of two kinds:
a) States that read the next unused letter from the TAPE.

<>

Which may have out-edges labeled with letters from X and the blank character A, with
no restrictions on duplication of labels and no insistence that there be a label for each
letter of 2, or A

—
 —

36

Computation Theory

b) States that read the top character of STACK.

o>

Which may have out-edges labeled with letters from I' and the blank
character A, again with no restrictions.

2 Note: we require that the states be connected so as to become a connected

directed graph.

Theorem
For every regular language L there is some PDA that accepts it.

Poof
Since L is regular, so it is accepted by some FA, then we can convert FA to PDA (as
in the following example).

Example:
The FA that used to be drawn like this:
b a a
b

(the FA that accepts all words ending in the letter a) becomes, in the new symbolism,
the machine below:

START

/
A

a
READ READ

\

A
‘ REJECT ’ ‘ ACCEPT }

37

—
 —

Computation Theory

Example:
b 2 a b
O
b
Becomes:

Example: The language accepted by this PDA is exactly: {a"b",n=0, 1,2, ...}

‘ START ’

Y

a \ A
READ
b

REJECT

PUSH a

a
(REJECT) (ACCEPT) (REJECT)

Before we begin to analyze this machine in general, let us see it in operation on
the input string aaabbb. We begin by assuming that this string has been put on the
TAPE. We always start the operation of the PDA with the STACK empty as
shown:

TAPE alala|lb|b|b| Al...

We have to PUSH the first part of string into the STACK and then POP contents
of the STACK when we start reading the second part of the string. For example,
aaabbbA We will PUSH all "aaa" into the stack then we will POP when we start
reading "bbb".

—
 —

38

Computation Theory

We can divide string reading into two stages. When we get the first part "aaa" we
will PUSH them into the STACK, and when we read the second part "bbb" we
will POP from the stack. We should get "aaa" and the STACK will be empty and
the string is reached to the space symbol, so if we read the space symbol we have
to POP from the stack, if we get space symbol that is means the string is accepted.

State
START
READ
PUSH a
READ
PUSH a
READ
PUSH a
READ
POP
READ
POP
READ
POP
READ

POP
ACCEPT

Stack
A
A
al
al
aal
aal
aaal
aaal
aal
aal
al
al
A
A

Tape
aaabbbA

__aaabbbA
aaabbbA
aaabbbA
aaabbbA
aaabbbA
aaabbbA

aaabbbA
aaabbbA
aaabbbA
aaabbbA
aaabbbA
aaabbbA
aaabbbA
aaabbbA

' START ’

REJECT REJECT (ACCEPT I (REJECT)

2 Note: The Type of PDA above is called deterministic PDA is one (like the

pictures we drew above) for which every input string has a unique path through
the machine.

—
 —

39

Computation Theory

Xample: Lonsider the palindrome

, language oI all words o € 10rm:

sXreverese(s), where s is any string in (a+b)*, such as:
{X, aXa, bXb, aaXaa, abXba, aabXbaa, ...}

PUSH a

PUSH b |

In the first part of machine, the STACK is loaded with the letters from the input
string just as the initial a's from a"b" were pushed onto the STACK.
Conveniently for us, the letters go into the STACK first letter on the bottom,
second letter on top of it, and so on till the last letter pushed in ends up on top.
When we read the X we know we have reached the middle of the input. We can
then begin to compare the front half of the word (which is reversed in the STACK)
with the back half (still on the TAPE) to see that they match. We begin by storing
the front half of the input string in the STACK with this part of the machine.

‘ START }

PUSH a

PUSH & |

—

40

-

4

READ

C—

Computation Theory

If we READ an a, we PUSH an a. If we READ a b, we PUSH a b, and on and on
until we encounter the X on the TAPE.

After we take the first half of the word and stick it into the STACK, we have
reversed the order of the letters and it looks exactly like the second half of the
word. For example, if we begin with the input string

abbXbba
then at the moment we are just about to read the X we have:
TAPE d b [X b b a A
STACK
b
b
a
A

When we read the X we do not put it into the STACK. It is used up in the process
of transferring us to phase two. This is where we compare what is left on the
TAPE with what is in the STACK. In order to reach ACCEPT, these two should
be the same letter for letter, down to the blanks.

a
b
A

ACCEPT

—
 —

41

Computation Theory

Example: ODDPALINDROME = {a, b, aaa, aba, bab, bbb, ... }

‘ START ’

PUSH a

PUSH b

The problem here is that the middle letter does not stand out, so it is harder to
recognize where the first half ends and the second half begins. In fact, it's not only
harder; it's impossible.

In PALINDROMEX we knew that X marked the spot; now we have lost our
treasure map. If we accidentally push into the STACK even one letter too many,
the STACK will be larger than what is left on the TAPE and the front and back
will not match. The algorithm we used to accept PALINDROMEX cannot be used
without modification to accept ODDPALINDROME. We are not completely lost,
though. The algorithm can be altered to fit our needs by introducing one
nondeterministic jump.

For every word in ODDPALINDROME, if we make the right choices the path
does lead to acceptance.

The word “aba” can be accepted by this machine if it follows the dotted path:

—
 —

42

Computation Theory

State Stack Tape

START A abaA
READ A abaA
PUSH a al abaA
READ al abaA
READ al abaA
POP al abaA
READ A abaA
POP - _abaA
ACCEPT

Example: EVENPALINDROME = {s reverse(s), where s is in (a + b)*}
{A, aa, bb, aaaa, abba, baab, babbab, bbbbaaaaaa, ... }

We will check the string “babbab” is ACCEPT or not in the following machine:

PUSH

A

ACCEPT

43

—

]
J

Computation Theory

State Stack Tape
START A babbabA
READ A babbabA

PUSH b bA babbabA
READ bA babbabA
PUSH a baA babbabA
READ baA babbabA
PUSHD babA babbabA
READ babA babbabA

POP baA babbabA
READ baA babbabA
POP bA babbabA
READ bA babbabA
POP A babbabA
READ A babbabA
POP - babbabA
ACCEPT

2. Note: The type of PDA above is called nondeterministic PDA is one for

which at certain times we may have to choose among possible paths through the
machine.

—
 —

44

Computation Theory

Homework: Consider the language generated by the CFG:
S —>S+S|S *S|4 The terminals are +, *, and 4 and the
only nonterminal is S.

- Is the string “4 + 4 * 4” accept in the following PDA or not?

‘ START ’
[

PUSH, S

45

—
 —

Computation Theory

—

46

C—

	Theorem
	Poof
	Example:
	Example:

