| sy I a -
AL MUSTAQBAL UNIVERSITY

% b I

Department of Cyber Security

Subject: Data Structure
Class: Second

Lecturer: Msc :Muntather AL-mussawee

Lecture: (4)

Queue -2




CIRCULAR QUEUE
A more efficient queue representation is obtained by regarding the array Q[MAX] as circular.
Any number of items could be placed on the queue. This implementation of a queue is called
a circular queue because it uses its storage array as if it were a circle instead of a linear list.
There are two problems associated with linear queue. They are:

e Time consuming: linear time to be spent in shifting the elements to the beginning of
the queue.
e Signaling queue full: even if the queue is having vacant position.
For example, let us consider a linear queue status as follows:
0 1 2 3 4

REAR = 5
33| 44 133 FRONT = 2
F R

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as the
rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal. The queue
status is as follows:

0 1 P 3 4

REAR = 5
e FRONT = 2
F R

This difficulty can be overcome if we treat queue position with index zero as a position that
comes after position with index four then we treat the queue as a circular queue.

In circular queue if we reach the end for inserting elements to it, it is possible to insert new
elements if the slots at the beginning of the circular queue are empty.

Representation of Circular Queue:

Let us consider a circular queue, which can hold maximum (MAX) of six elements. Initially
the queue is empty.

04

1 Queue Empty
4 MAX = &
FROMT = REAR = 0
COUMNT =0

3 2
Circular Queues

Now, insert 11 to the circular queue. Then circular queue status will be:

20




FROM
REAR

T =0
=(REAR = 1) % &
COUNT = 1

=1

_ P\m

Circular Queue

F

v

R
a .

Insert new elements 22, 33, 44 and 55 into the circular queue. The circular queue status is

/

FRONT = D

REAR = (REAR + 1) % 6 =5
COUNT = 5

8

Circular Queues

Now, delete an element. The element deleted is the element at the front of the circular
gueue. So, 11 is deleted. The circular queue status is as follows:

..fF
1

Al

o

FRONT = (FRONT + 1) % &6 = 1
REAR = 5
COUNT = COUNT - 1 = 4

o

2

Circular Queue

Again, delete an element. The element to be deleted is always pointed to by the FRONT
pointer. So, 22 is deleted. The circular queue status is as follows:

lm#/:ﬂ

FRONT = (FRONT + 1) % &
REAR =3

= 2
COUNT = COUNT -1 =3

/

F
3 2

Circular Queue

Again, insert another element 66 to the circular queue. The status of the circular queue is:

21




Circular Queue
Now, insert new elements 77 and 88 into the circular queue. The circular queue status is:
Cee | 7>
4 FROMNT = 2, REAR = 2
& =
3

REAR = REAR %% 2
COUNT =&

o
EB 1
S

Circular Queaues

Now, if we insert an element to the circular queue, as COUNT = MAX we cannot add the
element to circular queue. So, the circular queue is full.

Operations on Circular queue:

a.enqueue() or insertion():This function is used to insert an element into the circular queue.
In a circular queue, the new element is always inserted at Rear position.

void insertCQ()

{
int data;
if(count ==MAX)
{
printf("\n Circular Queue is Full");
}
else
{

printf("\n Enter data: ");
scanf("%d", &data);
CQJrear] = data;
rear = (rear + 1) % MAX;
count ++;
printf("\n Data Inserted in the Circular
Queue ");

}

Algorithm: procedure of insertCQ():

Step-1:START
Step-2: if count==MAX then
Write “Circular queue is full”

Step-3:otherwise

3.1: read the data element

3.2: CQ[rear]=data

3.3: rear=(rear+1)%MAX

3.4: count=count+1
Step-4:STOP

22




b.dequeue() or deletion():This function is used to delete an element from the circular

g

ueue. In a circular queue, the element is always deleted from front position.

void deleteCQ()
{
if(count ==0)
{
printf("\n\nCircular Queue is Empty..");
}
else
{
printf("\n Deleted element from Circular
Queue is %d ", CQ[front]);

front = (front + 1) % MAX;

count --;

}
}

Algorithm: procedure of deleteCQ():

Step-1:START
Step-2: if count==0 then
Write “Circular queue is empty”
Step-3:otherwise
3.1: print the deleted element
3.2: front=(front+1)%MAX
3.3: count=count-1
Step-4:STOP

(o]

.dispaly():This function is used to display the |

ist of elements in the circular queue.

void displayCQ()
{
inti, j;

if(count ==0)
{
printf("\n\n\t Circular Queue is Empty ");
}

else

{
printf("\n Elements in Circular Queue are:
")
j =count;

for(i = front; j I=0; j--)
{
printf("%d\t", CQ[i]);
i=(i+1) % MAX;

}
}
}

7

Algorithm: procedure of displayCQ():

Step-1:START
Step-2: if count==0 then
Write “Circular queue is empty”

Step-3:otherwise

3.1: print the list of elements

3.2: for i=front to j!=0

3.3: print CQ]i]

3.4: i=(i+1)%MAX
Step-4:STOP

Deque:
In the preceding section we saw that a queue

which we remove items at the other end. In

in which we insert items at one end and from
this section we examine an extension of the

gueue, which provides a means to insert and remove items at both ends of the queue. This

data structure is a deque. The word deque is a

n acronym derived from double-ended queue.

Below figure shows the representation of a deque.

23




Deletion 4 w16l ss | e | ¥ Insertion

/'f f\‘

Insertion

Deletion
front rear

Figure  Representation of a deque,

deque provides four operations. Below Figure shows the basic operations on a deque.
e enqueue_front: insert an element at front.

e dequeue_front: delete an element at front.

® enqueue_rear: insert element at rear.

e dequeue_rear: delete element at rear.

11|22 enqueve_front(33) |33[11]| 22 enqueve_rear(44} | 431,22 44
—_—> —_—>

dequeuve_front{33}

ssl 11| 22 enguews_front{55) 11| 22 deiaeue_rea'l:ﬂﬂ:l 11 |22 |44
Figure - . Basic operations on degque

There are two variations of deque. They are:

e Input restricted deque (IRD)

e Qutput restricted deque (ORD)

An Input restricted deque is a deque, which allows insertions at one end but allows deletions
at both ends of the list.

An output restricted deque is a deque, which allows deletions at one end but allows insertions
at both ends of the list.

Priority Queue:

A priority queue is a collection of elements such that each element has been assigned a
priority. We can insert an element in priority queue at the rare position. We can delete an
element from the priority queue based on the elements priority and such that the order in
which elements are deleted and processed comes from the following rules:

1. An element of higher priority is processed before any element of lower priority.

2. Two elements with same priority are processed according to the order in which they were
added to the queue. It follows FIFO or FCFS(First Comes First serve) rules.

24




We always remove an element with the highest priority, which is given by the minimal integer
priority assigned.

3] [1] [4] [2] [5]  priority
| 5/10/30[25]40 Queue
[0] [1] [2] [3] [4] index

A prototype of a priority queue is time sharing system: programs of high priority are processed
first, and programs with the same priority form a standard queue. An efficient
implementation for the Priority Queue is to use heap, which in turn can be used for sorting
purpose called heap sort

Priority queues are two types:
1. Ascending order priority queue
2. Descending order priority queue
1. Ascending order priority queue: It is Lower priority number to high priority number.
Examples: orderis 1,2,3,4,5,6,7,8,9,10
2. Descending order priority queue: It is high priority number to lowest priority number.
Examples: Order is 10,9,8,7,6,5,4,3,2,1
Implementation of Priority Queue:
Implementation of priority queues are two types:
1. Through Queue(Using Array)
2. Through Sorted List(Using Linked List)
1. Through Queue (Using Array): In this case element is simply added at the rear end as
usual. For deletion, the element with highest priority is searched and then deleted.

Insert 40 priority 1

31 1] 4] (2] < priority 31 [1] [4] [2]1[1] —<=— priority
| 5/10[30]25] |=— Queue ' 5/10[30[25/40| =— Queue
(0] (1] [2] [3] [4] = index [0] 1] [2] [3] [4] = index
rear = 3 rear = 4
Delete Delete
(3] (4] [2] [1] - priority [3114] [2] - priority
'5/30]/25/40] | «— Queue "530[25] | | «— Queue
[0] [1] [2] [3] [4] = index [0] [1] [2] [3] [4] ==— index
rear = 3 rear = 2

2. Through sorted List (Using Linked List): In this case insertion is costly because the element
insert at the proper place in the list based on the priority. Here deletion is easy since the
element with highest priority will always be in the beginning of the list.

25




Insert 40 priority 1

front front
Data |
/S ,
o[1]s8] J+{321]J »[1[58] {1 [a0] J={3]21]}}
. N &
priority  link Delete
Insert 45 priority 2 "OT
front
{1 [a0] J+{2 Ji5] J+{3 21
1 [s8] »{1 [a0] {2 [as] f=[3 2]}
1. Difference between stacks and Queues?
stacks Queues

1.A stack is a linear list of elements in which
the element may be inserted or deleted at
one end.

2. In stacks, elements which are inserted
last is the first element to be deleted.

3.Stacks are called LIFO (Last In First
Out)list

4.In stack elements are removed in reverse
order in which thy are inserted.

5.suppose the elements a,b,c,d,e are
inserted in the stack, the deletion of

elements will be e,d,c,b,a.

6.In stack there is only one pointer to insert
and delete called “Top”.

7.Initially top=-1 indicates a stack is empty.

8.Stack is full represented by the condition
TOP=MAX-1(if array index starts from ‘0’).

9.To push an element into a stack, Top is
incremented by one

10. To POP an element from stack,top is
decremented by one.

1.A Queue is a linerar list of elements in which
the elements are added at one end and
deletes the elements at another end.

2. .In Queue the element which is inserted
first is the element deleted first.

3. Queues are called FIFO (First In First
Out)list.

4. In Queue elements are removed in the
same order in which thy are inserted.

5. Suppose the elements a,b,c,d,e are inserted
in the Queue, the deletion of elements will be
in the same order in which thy are inserted.

6. In Queue there are two pointers one for
insertion called “Rear” and another for
deletion called “Front”.

7. Initially Rear=Front=-1 indicates a Queue is
empty.

8.Queue is full represented by the condition
Rear=Max-1.

9.Toinsert an element into Queue, Rear is
incremented by one.

10. To delete an element from Queue, Front is

26




incremented by one.
11.The conceptual view of Stack is as
follows: 11.The conceptual view of Queue is as
follows:
/\ /\POP O 1 2 3 _____________ MAX'].
Ee 0 ||| | | TTTTETTETEEEEET
s TT Empty Queue
cc Front=-1
Rear=-1
BB
AA

27




	Representation of Circular Queue:
	Operations on Circular queue:
	Priority Queue:
	Priority queues are two types:
	Implementation of Priority Queue:

