

 مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م الاـــــــ ـــس ــق
Department of Cyber Security

Subject:

Public key encryption

Class:

third

Lecturer:

Asst. Lecturer Qusai Al-Durrah

Lecture (5 & 6):

RSA Cryptosystem and Digital Signatures

P a g e | 2

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

1. Introduction
The RSA cryptosystem, developed by Rivest, Shamir, and Adleman (1977), is
the most widely used public-key encryption algorithm in modern information
security. It supports both confidentiality (encryption/decryption) and
authentication (digital signatures). Its security relies on the difficulty of factoring
very large integers
Although the RSA scheme was publicly announced in 1977, historical records later
revealed that it had been invented earlier (in 1973) at GCHQ (UK) by Clifford
Cocks, but was kept classified.
RSA is a block cipher in which the plaintext and ciphertext are integers between 0
and (n-1) for some (n). Encryption and decryption are of the following form, for
some plaintext block M and ciphertext block C:

C = M e mod n
M = C d mod n

Both sender and receiver must know the values of n and e, and only the receiver
knows the value of d. This is a public-key encryption algorithm with a public key
of PU = {e, n} and a private key of PR = {d, n}.
In this lecture, we will explore:

 The mathematical basis of RSA.
 The key generation, encryption, and decryption algorithms.
 The RSA signature scheme.
 Security issues and common attacks.
 Code of the RSA algorithm in python.

2. Learning Outcomes
By the end of these two lectures, students will be able to:

1. Explain the theoretical foundation of RSA and its reliance on number
theory.

2. Apply the RSA key generation, encryption, and decryption algorithms to
simple examples.

3. Describe how RSA provides both encryption and digital signatures.
4. Demonstrate how modular arithmetic ensures confidentiality and

authenticity.
5. Analyze major security threats and attacks on RSA and discuss

countermeasures.

P a g e | 3

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

3. RSA Algorithm:

 Key GeneraƟon:

 Select p, q : where p, q both prime , p ≠ q

 Calculate n : n = p × q

 Calculate Ф(n) : Ф(n) = (p-1) × (q-1)

 Select integer e: gcd (e , Ф(n)) = 1 ; 1 < e < Ф(n)

 Calculate d : d × e mod Ф(n) = 1

Public Key PU = {e, n}

Private key PR = {d, n}

 Encryption:
 Plaintext M<n

 Ciphertext C = M e mod n

 Decryption:
 Ciphertext C

 Plaintext M = C d mod n

Figure 1: RSA example

3.1 RSA Example 1:

An example is shown in Figure 1 For this example, the keys were generated as:

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = p× q = 17  11 = 187.

P a g e | 4

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

3. Calculate (n) = (p – 1) × (q – 1) = 16  10 = 160.

4. Select (e) Where e is relaƟvely prime to (n) = 160 and less than (n);

gcd (e , Ф(n)) = 1  gcd(e , 160) =1 we choose e = 7.

5. Determine d such that d×e mod 160 = 1 and d < 160.

The correct value is d = 23, because 23  7 = 161 mod 160 = 1

The resulting keys are:

Public Key PU = {7, 187}

Private Key PR = {23, 187}.

The example shows the use of these keys for a plaintext input of M = 88.
If M<n then:

EncrypƟon: C = 887 mod 187 = 11

DecrypƟon: M = 1123 mod 187 = 88.

3.2 RSA Example 2:

Key GeneraƟon:

 P = 2357, q = 2551

 n =2357×2551 = 6,012,707

 ϕ(n) = 6,007,800

 Choose e = 3,674,911

 Compute d= 422,191 such that e × d ≡ 1(mod ϕ(n))

Public Key: (n= 6,012,707, e= 3,674,911)

Private Key: (n= 6,012,707, d= 422,191)

EncrypƟon:

For message m= 5,234,673:

c=me mod n= 5,234,6733,674,911 mod 6,012,707 = 3,650,502

P a g e | 5

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

DecrypƟon:

m=cd mod n=3,650,502422,191 mod 6,012,707=5,234,673

The decrypted message matches the original plaintext.

4. RSA Signature Scheme:

RSA can also provide digital signatures—ensuring authentication, integrity, and

non-repudiation.

4.1 Signing and verification Processes

 Sender A computes: s ≡ mdA (mod nA)

where dA is A’s private key.

 The receiver verifies by: m ≡ seA (mod nA)

If the result matches, the signature is valid.

4.2 RSA Signature Example

 p=11, q=17 ⇒ n= p*q= 187

 ϕ(n)=160

 eA=27 , dA=3

 m=55

Signing:

s=553 mod 187 = 132

Verification:

m=13227 mod 187 = 55

P a g e | 6

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

5. Security of RSA:

Four possible approaches to aƩacking the RSA algorithm are:

 Brute Force AƩack

 trying all possible private keys

 The defense against this is to use a large key space, but then slower

 MathemaƟcal AƩacks (factoring n)

 Factoring aƩacks used the quadraƟc sieve (QS), The recent aƩack on

RSA-130 used the generalized number field sieve (GNFS). We can

expect further refinements in GNFS, and the use of an even beƩer

algorithm, such as the special number field sieve (SNFS). It is

reasonable to expect a breakthrough that would enable a general

factoring performance in about the same Ɵme as SNFS, or even beƩer.

see improving algorithms (QS, GNFS, SNFS)

 Currently 1024-2048-bit keys seem secure

 Timing AƩacks (on implementaƟon)

 These depend on the running Ɵme of the decrypƟon algorithm.

 use - constant Ɵme, random delays, blinding

 Chosen Ciphertext AƩacks (on RSA props)

 This type of aƩack exploits properƟes of the RSA algorithm

6. RSA Algorithm Implementation in Python:

This secƟon demonstrates how the RSA encrypƟon and decrypƟon process can be

implemented in Python. The code follows the same mathemaƟcal logic described

earlier — including key generaƟon, modular exponenƟaƟon, and text

encrypƟon/decrypƟon

P a g e | 7

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

import math

FuncƟon to find GCD (Greatest Common Divisor)

def gcd(a, b):

 while b != 0:

 a, b = b, a % b

 return a

FuncƟon to find e (public exponent)

def find_e(phi):

 for e in range(2, phi):

 if gcd(e, phi) == 1:

 return e

FuncƟon to find d (private exponent)

def find_d(e, phi):

 # Using the Extended Euclidean Algorithm

 d = pow(e, -1, phi)

 return d

RSA encrypƟon/decrypƟon funcƟon

def rsa_encrypt_decrypt(key, msg, n):

 result = ""

 for ch in msg:

 m = ord(ch)

 c = pow(m, key, n)

 result += chr(c % 256) # keeps result in readable ASCII range

 return result

--

Step 1: Select two prime numbers

P a g e | 8

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

p = 17

q = 11

Step 2: Compute modulus and toƟent

n = p * q

phi = (p - 1) * (q - 1)

Step 3: Select e and compute d

e = find_e(phi)

d = find_d(e, phi)

print("Public Key (e, n): <", e, ",", n, ">")

print("Private Key (d, n): <", d, ",", n, ">")

--

Step 4: Input message and perform encrypƟon/decrypƟon

msg = input("Enter a short message: ")

Encrypt message

cipher = rsa_encrypt_decrypt(e, msg, n)

print("\nCipher Text:", cipher)

Decrypt message

plain = rsa_encrypt_decrypt(d, cipher, n)

print("Decrypted Text:", plain)

--

ValidaƟon

if plain == msg:

 print("\n RSA EncrypƟon/DecrypƟon Successful!")

else:

P a g e | 9

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

 print("\n DecrypƟon Error - Check ImplementaƟon")

ExplanaƟon:

Step OperaƟon Purpose

1 Choose primes p, q Generate modulus n and toƟent φ(n)

2 Find e Public key exponent coprime to φ(n)

3 Compute d Private exponent using modular inverse

4 EncrypƟon: c = m^e mod n Converts plaintext into ciphertext

5 DecrypƟon: m = c^d mod n Restores original message

Output

Public Key (e, n): < 7 , 187 >

Private Key (d, n): < 23 , 187 >

Enter a short message: HI

Cipher Text: .9

Decrypted Text: HI

RSA EncrypƟon/DecrypƟon Successful!

7. Summary

The RSA algorithm is one of the most fundamental public-key encrypƟon

techniques used to ensure data confidenƟality and authenƟcaƟon.

It operates on simple mathemaƟcal principles of modular arithmeƟc and the

difficulty of factoring large prime numbers.

In this lecture, students learned the complete RSA process:

 How to generate keys using two prime numbers.

 How encrypƟon and decrypƟon are performed using modular

exponenƟaƟon.

P a g e | 10

Department of Cyber Security

Public key encrypƟon – Lecture (5 & 6)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

 How RSA also supports digital signatures for data integrity and

authenƟcaƟon.

The Python implementaƟon demonstrated how theoreƟcal RSA concepts

can be applied programmaƟcally to secure messages.

RSA remains essenƟal in many modern security applicaƟons, such as digital

cerƟficates, secure emails, and SSL/TLS protocols.

