AL MUSTAQBAL UNIVERSITY

.
1 Sl

t.— D ary ™y
DEPARTMENT OF CYBER SECURITY

SUBJECT:
PUBLIC KEY ENCRYPTION
CLASS:
THIRD
LECTURER:

ASST. LECTURER QUSAI AL-DURRAH

LECTURE (5 & 6):

RSA CRYPTOSYSTEM AND DIGITAL SIGNATURES

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

1. Introduction

The RSA cryptosystem, developed by Rivest, Shamir, and Adleman (1977), is
the most widely used public-key encryption algorithm in modern information
security. It supports both confidentiality (encryption/decryption) and
authentication (digital signatures). Its security relies on the difficulty of factoring
very large integers

Although the RSA scheme was publicly announced in 1977, historical records later
revealed that it had been invented earlier (in 1973) at GCHQ (UK) by Clifford
Cocks, but was kept classified.

RSA is a block cipher in which the plaintext and ciphertext are integers between 0
and (n-1) for some (n). Encryption and decryption are of the following form, for
some plaintext block M and ciphertext block C:

C=M¢modn

M =C%mod n

Both sender and receiver must know the values of n and e, and only the receiver
knows the value of d. This is a public-key encryption algorithm with a public key
of PU = {e, n} and a private key of PR = {d, n}.
In this lecture, we will explore:

The mathematical basis of RSA.

The key generation, encryption, and decryption algorithms.

The RSA signature scheme.

Security issues and common attacks.

Code of the RSA algorithm in python.

2. Learning Outcomes
By the end of these two lectures, students will be able to:
1. Explain the theoretical foundation of RSA and its reliance on number
theory.
2. Apply the RSA key generation, encryption, and decryption algorithms to
simple examples.
. Describe how RSA provides both encryption and digital signatures.
. Demonstrate how modular arithmetic ensures confidentiality and
authenticity.
. Analyze major security threats and attacks on RSA and discuss
countermeasures.

Page |2

Department of Cyber Security
Lecturer Name:
Public key encryption — Lecture (5 & 6)

Asst. Lecturer Qusai Al-Durrah
Third Stage Q

3. RSA Algorithm:

+ Key Generation:

e Selectp, g : where p, g both prime, p #q

e Calculaten: n=pxq

e Calculate ®(n): ®(n) = (p-1) x (g-1)
Select integer e: ged(e, ®(n))=1; 1<e<®(n)
Calculate d: d xemod ®(n) =1
Public Key PU ={e, n}
Private key PR ={d, n}

< Encryption:
e Plaintext
e Ciphertext
% Decryption:
e Ciphertext C

e Plaintext M=C%mod n

Encryption Decryption
ciphertext

L, 88%mod@87= 11 1 11@\)::10:1 88 -

|/ |/
8

PU=T7,187 PR=2}.1
Figure 1: RSA example

7

3.1 RSA Example 1:

An example is shown in Figure 1 For this example, the keys were generated as:

1. Select two prime numbers, p =17 and g = 11.

2. Calculaten=pxg=17 x 11 = 187.

Page |3

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

3. Calculate ¢(n) = (p —1) x (g —1) = 16 x 10 = 160.

4. Select (e) Where e is relatively prime to ¢(n) = 160 and less than ¢(n);
gcd (e, ®(n)) =1 =» gcd(e, 160) =1 we choose e = 7.

5. Determine d such that dxe mod 160 =1 and d < 160.

The correct value is d = 23, because 23 x 7=161 mod 160 =1
The resulting keys are:

Public Key PU = {7, 187}
Private Key PR = {23, 187}.

The example shows the use of these keys for a plaintext input of M = 88.
If M<n then:

Encryption: C = 88’ mod 187 =11
Decryption: M = 112 mod 187 = 88.

3.2 RSA Example 2:

Key Generation:

P =2357, q=2551

n =2357x2551 =6,012,707

@(n) = 6,007,800

Choose e = 3,674,911

Compute d=422,191 such that e x d = 1(mod ¢(n))
Public Key: (n= 6,012,707, e= 3,674,911)
Private Key: (n=6,012,707, d=422,191)
Encryption:
For message m=5,234,673:
c=m®modn=5,234,673%%"41mod 6,012,707 = 3,650,502

Page | 4

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Decryption:
m=c mod n=3,650,502%?>*%1mod 6,012,707=5,234,673

The decrypted message matches the original plaintext.

4. RSA Signature Scheme:
RSA can also provide digital signatures—ensuring authentication, integrity, and

non-repudiation.

4.1 Signing and verification Processes

« Sender A computes: s = m* (mod na)

where da is A’s private key.
o The receiver verifies by: m = s** (mod na)

If the result matches, the signature is valid.
4.2 RSA Signature Example

p=11, q=17 = n=p*q= 187

d(n)=160

ea=27 , da=3

m=55
Signing:
s=55*mod 187 =132
Verification:

m=1322" mod 187 =55

Page |5

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

5. Security of RSA:

Four possible approaches to attacking the RSA algorithm are:

» Brute Force Attack

® trying all possible private keys

® The defense against this is to use a large key space, but then slower
» Mathematical Attacks (factoring n)

® Factoring attacks used the quadratic sieve (QS), The recent attack on
RSA-130 used the generalized number field sieve (GNFS). We can
expect further refinements in GNFS, and the use of an even better
algorithm, such as the special number field sieve (SNFS). It is
reasonable to expect a breakthrough that would enable a general
factoring performance in about the same time as SNFS, or even better.
see improving algorithms (QS, GNFS, SNFS)

® Currently 1024-2048-bit keys seem secure
» Timing Attacks (on implementation)

® These depend on the running time of the decryption algorithm.

® use - constant time, random delays, blinding
» Chosen Ciphertext Attacks (on RSA props)

® This type of attack exploits properties of the RSA algorithm

6. RSA Algorithm Implementation in Python:

This section demonstrates how the RSA encryption and decryption process can be
implemented in Python. The code follows the same mathematical logic described
earlier — including key generation, modular exponentiation, and text
encryption/decryption

Page | 6

Department of Cyber Security Lecturer Name:

Public key encryption — Lecture (5 & 6)

Asst. Lecturer Qusai Al-Durrah
Third Stage Q

import math

Function to find GCD (Greatest Common Divisor)
def gcd(a, b):
while b 1= 0:
a,b=b,a%b
return a

Function to find e (public exponent)
def find_e(phi):
for e in range(2, phi):
if gcd(e, phi) == 1:
return e

Function to find d (private exponent)
def find_d(e, phi):
Using the Extended Euclidean Algorithm

d = pow(e, -1, phi)
returnd

RSA encryption/decryption function
def rsa_encrypt_decrypt(key, msg, n):
result =""
for ch in msg:
m = ord(ch)
c = pow(m, key, n)
result += chr(c % 256) # keeps result in readable ASCIl range
return result

#
Step 1: Select two prime numbers

Page |7

Department of Cyber Security Lecturer Name:

Public key encryption — Lecture (5 & 6)

Asst. Lecturer Qusai Al-Durrah
Third Stage Q

Step 2: Compute modulus and totient
n=p*q

phi=(p-1)*(q-1)

Step 3: Select e and compute d

e = find_e(phi)

d =find_d(e, phi)

print("Public Key (e, n): <", e, ",", n, ">"
print("Private Key (d, n): <", d, ",", n, ">"

#

Step 4: Input message and perform encryption/decryption

msg = input("Enter a short message: ")

Encrypt message
cipher = rsa_encrypt_decrypt(e, msg, n)
print("\nCipher Text:", cipher)

Decrypt message
plain = rsa_encrypt_decrypt(d, cipher, n)
print("Decrypted Text:", plain)

H
Validation
if plain == msg:

print("\n RSA Encryption/Decryption Successful!")
else:

Page | 8

Department of Cyber Security Lecturer Name:

ol

Public key encryption — Lecture (5 & 6)

/‘7 g
%
0 393

Asst. Lecturer Qusai Al-Durrah
Third Stage Q

print("\n Decryption Error - Check Implementation")

Explanation:

Step Operation Purpose

1 Choose primes p, q Generate modulus n and totient ¢(n)

Find e Public key exponent coprime to ¢(n)

Compute d Private exponent using modular inverse

2
3
4 Encryption: c = m”e mod n Converts plaintext into ciphertext
5

Decryption: m = c*d mod n Restores original message

Output

Public Key (e, n): <7, 187 >

Private Key (d, n): < 23, 187 >

Enter a short message: Hl

Cipher Text: .9

Decrypted Text: Hi

RSA Encryption/Decryption Successful!

7. Summary
The RSA algorithm is one of the most fundamental public-key encryption
techniques used to ensure data confidentiality and authentication.
It operates on simple mathematical principles of modular arithmetic and the
difficulty of factoring large prime numbers.
In this lecture, students learned the complete RSA process:

« How to generate keys using two prime numbers.

« How encryption and decryption are performed using modular

exponentiation.

Page |9

CURITY DEp,
N &

&
<

WERSITY
\»‘\

Department of Cyber Security
Lecturer Name:
Public key encryption — Lecture (5 & 6)

Asst. Lecturer Qusai Al-Durrah
Third Stage Q

How RSA also supports digital signatures for data integrity and
authentication.

The Python implementation demonstrated how theoretical RSA concepts
can be applied programmatically to secure messages.
RSA remains essential in many modern security applications, such as digital
certificates, secure emails, and SSL/TLS protocols.

