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1. Introduction 
The RSA cryptosystem, developed by Rivest, Shamir, and Adleman (1977), is 
the most widely used public-key encryption algorithm in modern information 
security. It supports both confidentiality (encryption/decryption) and 
authentication (digital signatures). Its security relies on the difficulty of factoring 
very large integers 
Although the RSA scheme was publicly announced in 1977, historical records later 
revealed that it had been invented earlier (in 1973) at GCHQ (UK) by Clifford 
Cocks, but was kept classified. 
RSA is a block cipher in which the plaintext and ciphertext are integers between 0 
and (n-1) for some (n). Encryption and decryption are of the following form, for 
some plaintext block M and ciphertext block C: 

C = M e mod n 
M = C d mod n 

Both sender and receiver must know the values of n and e, and only the receiver 
knows the value of d. This is a public-key encryption algorithm with a public key 
of PU = {e, n} and a private key of PR = {d, n}. 
In this lecture, we will explore: 

 The mathematical basis of RSA. 
 The key generation, encryption, and decryption algorithms. 
 The RSA signature scheme. 
 Security issues and common attacks. 
 Code of the RSA algorithm in python. 

 
2. Learning Outcomes 
By the end of these two lectures, students will be able to: 

1. Explain the theoretical foundation of RSA and its reliance on number 
theory. 

2. Apply the RSA key generation, encryption, and decryption algorithms to 
simple examples. 

3. Describe how RSA provides both encryption and digital signatures. 
4. Demonstrate how modular arithmetic ensures confidentiality and 

authenticity. 
5. Analyze major security threats and attacks on RSA and discuss 

countermeasures. 
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3. RSA Algorithm: 

 Key GeneraƟon: 

 Select p, q  : where p, q both prime , p ≠ q 

 Calculate n : n = p × q 

 Calculate Ф(n) : Ф(n) = (p-1) × (q-1) 

 Select integer e: gcd (e , Ф(n)) = 1 ; 1 < e < Ф(n) 

 Calculate d : d × e mod Ф(n) = 1 

Public Key PU = {e, n} 

Private key PR = {d, n} 

 Encryption: 
 Plaintext M<n 

 Ciphertext C = M e mod n 

 Decryption: 
 Ciphertext C 

 Plaintext M = C d mod n 

 
Figure 1: RSA example 

3.1 RSA Example 1: 

An example is shown in Figure 1 For this example, the keys were generated as: 

1. Select two prime numbers, p = 17 and q = 11. 

2. Calculate n = p× q = 17  11 = 187. 
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3. Calculate (n) = (p – 1) × (q – 1) = 16  10 = 160. 

4. Select (e) Where e is relaƟvely prime to (n) = 160 and less than (n); 

gcd (e , Ф(n)) = 1  gcd(e , 160) =1 we choose e = 7. 

5. Determine d such that d×e mod 160 = 1 and d < 160. 

The correct value is d = 23, because 23  7 = 161 mod 160 = 1 

The resulting keys are: 

Public Key PU = {7, 187} 

Private Key PR = {23, 187}. 

The example shows the use of these keys for a plaintext input of M = 88. 
If M<n then: 

EncrypƟon: C = 887 mod 187 = 11 

DecrypƟon: M = 1123 mod 187 = 88. 

3.2 RSA Example 2: 

Key GeneraƟon: 

 P = 2357, q = 2551 

 n =2357×2551 = 6,012,707 

 ϕ(n) = 6,007,800 

 Choose e = 3,674,911 

 Compute d= 422,191 such that e × d ≡ 1(mod ϕ(n)) 

Public Key: (n= 6,012,707, e= 3,674,911) 

Private Key: (n= 6,012,707, d= 422,191) 

EncrypƟon: 

For message m= 5,234,673: 

c=me mod n= 5,234,6733,674,911 mod 6,012,707 = 3,650,502 
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DecrypƟon: 

m=cd mod n=3,650,502422,191 mod 6,012,707=5,234,673 

The decrypted message matches the original plaintext. 

4. RSA Signature Scheme: 

RSA can also provide digital signatures—ensuring authentication, integrity, and 

non-repudiation. 

4.1 Signing and verification Processes 

 Sender A computes: s ≡ mdA (mod nA) 

where dA is A’s private key. 

 The receiver verifies by: m ≡ seA (mod nA) 

If the result matches, the signature is valid. 

4.2 RSA Signature Example 

 p=11, q=17 ⇒ n= p*q= 187 

 ϕ(n)=160  

 eA=27 , dA=3 

 m=55 

Signing: 

s=553 mod 187 = 132  

Verification: 

m=13227 mod 187 = 55 
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5. Security of RSA: 

Four possible approaches to aƩacking the RSA algorithm are: 

 Brute Force AƩack 

 trying all possible private keys 

 The defense against this is to use a large key space, but then slower 

 MathemaƟcal AƩacks (factoring n) 

 Factoring aƩacks used the quadraƟc sieve (QS), The recent aƩack on 

RSA-130 used the generalized number field sieve (GNFS). We can 

expect further refinements in GNFS, and the use of an even beƩer 

algorithm, such as the special number field sieve (SNFS). It is 

reasonable to expect a breakthrough that would enable a general 

factoring performance in about the same Ɵme as SNFS, or even beƩer. 

see improving algorithms (QS, GNFS, SNFS) 

 Currently 1024-2048-bit keys seem secure 

 Timing AƩacks (on implementaƟon) 

 These depend on the running Ɵme of the decrypƟon algorithm. 

 use - constant Ɵme, random delays, blinding 

 Chosen Ciphertext AƩacks (on RSA props) 

 This type of aƩack exploits properƟes of the RSA algorithm 

6. RSA Algorithm Implementation in Python: 

This secƟon demonstrates how the RSA encrypƟon and decrypƟon process can be 

implemented in Python. The code follows the same mathemaƟcal logic described 

earlier — including key generaƟon, modular exponenƟaƟon, and text 

encrypƟon/decrypƟon 
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import math 

 
# FuncƟon to find GCD (Greatest Common Divisor) 

def gcd(a, b): 

    while b != 0: 

        a, b = b, a % b 

    return a 

 
# FuncƟon to find e (public exponent) 

def find_e(phi): 

    for e in range(2, phi): 

        if gcd(e, phi) == 1: 

            return e 

 
# FuncƟon to find d (private exponent) 

def find_d(e, phi): 

    # Using the Extended Euclidean Algorithm 

    d = pow(e, -1, phi) 

    return d 

 
# RSA encrypƟon/decrypƟon funcƟon 

def rsa_encrypt_decrypt(key, msg, n): 

    result = "" 

    for ch in msg: 

        m = ord(ch) 

        c = pow(m, key, n) 

        result += chr(c % 256)   # keeps result in readable ASCII range 

    return result 

 
# -------------------------------------------------------- 

# Step 1: Select two prime numbers 
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p = 17 

q = 11 

 
# Step 2: Compute modulus and toƟent 

n = p * q 

phi = (p - 1) * (q - 1) 

 
# Step 3: Select e and compute d 

e = find_e(phi) 

d = find_d(e, phi) 

 
print("Public Key (e, n): <", e, ",", n, ">") 

print("Private Key (d, n): <", d, ",", n, ">") 

 
# -------------------------------------------------------- 

# Step 4: Input message and perform encrypƟon/decrypƟon 

msg = input("Enter a short message: ") 

 
# Encrypt message 

cipher = rsa_encrypt_decrypt(e, msg, n) 

print("\nCipher Text:", cipher) 

 
# Decrypt message 

plain = rsa_encrypt_decrypt(d, cipher, n) 

print("Decrypted Text:", plain) 

 
# -------------------------------------------------------- 

# ValidaƟon 

if plain == msg: 

    print("\n RSA EncrypƟon/DecrypƟon Successful!") 

else: 
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    print("\n DecrypƟon Error - Check ImplementaƟon") 

 

ExplanaƟon:  

Step  OperaƟon  Purpose 

1 Choose primes p, q Generate modulus n and toƟent φ(n) 

2 Find e Public key exponent coprime to φ(n) 

3 Compute d Private exponent using modular inverse 

4 EncrypƟon: c = m^e mod n Converts plaintext into ciphertext 

5 DecrypƟon: m = c^d mod n Restores original message 

 

Output 

 

Public Key (e, n): < 7 , 187 > 

Private Key (d, n): < 23 , 187 > 

Enter a short message: HI 

Cipher Text: .9 

Decrypted Text: HI 

RSA EncrypƟon/DecrypƟon Successful! 

 

7. Summary 

The RSA algorithm is one of the most fundamental public-key encrypƟon 

techniques used to ensure data confidenƟality and authenƟcaƟon. 

It operates on simple mathemaƟcal principles of modular arithmeƟc and the 

difficulty of factoring large prime numbers. 

In this lecture, students learned the complete RSA process: 

 How to generate keys using two prime numbers. 

 How encrypƟon and decrypƟon are performed using modular 

exponenƟaƟon. 
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 How RSA also supports digital signatures for data integrity and 

authenƟcaƟon. 

The Python implementaƟon demonstrated how theoreƟcal RSA concepts 

can be applied programmaƟcally to secure messages. 

RSA remains essenƟal in many modern security applicaƟons, such as digital 

cerƟficates, secure emails, and SSL/TLS protocols. 

 


