| sy I a -
AL MUSTAQBAL UNIVERSITY

j i
S

Department of Cyber Security

Subject: Data Structure
Class: Second

Lecturer: Msc :Muntather AL-mussawee

Lecture: (2)

Stacks and Queue

UNIT-II
STACKS AND QUEUES

STACKS

A Stack is linear data structure. A stack is a list of elements in which an element may be
inserted or deleted only at one end, called the top of the stack. Stack principle is LIFO (last in,
first out). Which element inserted last on to the stack that element deleted first from the
stack.

As the items can be added or removed only from the top i.e. the last item to be added to a
stack is the first item to be removed.

Real life examples of stacks are:

B
= - T

Stack of books

Operations on stack:

The two basic operations associated with stacks are:
1. Push
2. Pop

While performing push and pop operations the following test must be conducted on the
stack.
a) Stack is empty or not b) stack is full or not

1. Push: Push operation is used to add new elements in to the stack. At the time of addition
first check the stack is full or not. If the stack is full it generates an error message "stack
overflow".

2. Pop: Pop operation is used to delete elements from the stack. At the time of deletion first
check the stack is empty or not. If the stack is empty it generates an error message "stack
underflow".

All insertions and deletions take place at the same end, so the last element added to
the stack will be the first element removed from the stack. When a stack is created, the stack
base remains fixed while the stack top changes as elements are added and removed. The most
accessible element is the top and the least accessible element is the bottom of the stack.

Representation of Stack (or) Implementation of stack:
The stack should be represented in two ways:

1. Stack using array

2. Stack using linked list

1. Stack using array:

Let us consider a stack with 6 elements capacity. This is called as the size of the stack. The
number of elements to be added should not exceed the maximum size of the stack. If we
attempt to add new element beyond the maximum size, we will encounter a stack overflow
condition. Similarly, you cannot remove elements beyond the base of the stack. If such is the
case, we will reach a stack underflow condition.

1.push():When an element is added to a stack, the operation is performed by push(). Below
Figure shows the creation of a stack and addition of elements using push().

22

11 11

Imsert Ins=rt
11 22

Figure Push operations on stack

Initially top=-1, we can insert an element in to the stack, increment the top value i.e

top=top+1. We can insert an element in to the stack first check the condition is stack is full or
not. i.e top>=size-1. Otherwise add the element in to the stack.

void push() Algorithm: Procedure for push():
{
int x; Step 1: START
if(top >=n-1) Step 2: if top>=size-1 then
{ Write “ Stack is Overflow”
printf("\n\nStack Step 3: Otherwise
Overflow.."); 3.1: read data value %’
return; 3.2: top=top+1;
3.3: stack[top]=x;
Step 4: END

printf("\n\nEnter data:");
scanf("%d", &x);

stack[top] = x;

top=top +1;
printf("\n\nData Pushed into
the stack");

2.Pop(): When an element is taken off from the stack, the operation is performed by pop().

56
3.using pop().

Figure

Pop opsrations on stadk

We can insert an element from the stack, decrement the top value i.e top=top-1.
We can delete an element from the stack first check the condition is stack is empty or not.
i.e top==-1. Otherwise remove the element from the stack.

Void pop()
{
If(top==-1)
{
Printf(“Stack is Underflow”);

}

else

{
printf(“Delete data %d”,stack[top]);

top=top-1;
}

}

Algorithm: procedure pop():
Step 1: START
Step 2: if top==-1then
Write “Stack is Underflow”
Step 3: otherwise
3.1: print “deleted element”
3.2: top=top-1;
Step 4: END

4.display(): This operation performed display the elements in the stack. We display the
element in the stack check the condition is stack is empty or not i.e top==-1.0therwise display

the list of elements in the stack.

33

22 1

11

Q0
Before Display

r. |

3.3

2F

11

=
=
1
‘0

aAfter Display

void display() Algorithm: procedure pop():
{ Step 1: START
If(top==-1) Step 2: if top==-1then
{ Write “Stack is Underflow”
Printf(“Stack is Underflow”); Step 3: otherwise
} 3.1: print “Display elements are”
else 3.2:fortopto0
{ Print ‘stack[i]’
printf(“Display elements are:); Step 4: END
for(i=top;i>=0;i--)
printf(“%d”,stack[i]);

}

Source code for stack operations, using array:

#include<stdio.h>
#inlcude<conio.h>
int stack[100],choice,n,top,x,i;
void push(void);
void pop(void);
void display(void);
int main()
{
//clrscr();
top=-1;
printf("\n Enter the size of STACK[MAX=100]:");
scanf("%d",&n);
printf("\n\t STACK OPERATIONS USING ARRAY");
printf("\n\t ");
printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4.EXIT");
do
{
printf("\n Enter the Choice:");
scanf("%d",&choice);
switch(choice)
{
case 1:
{
push();
break;
}
case 2:
{
pop();
break;

}

case 3:

{

display();
break;

}

case 4:
{
printf("\n\t EXIT POINT ");
break;
}
default:
{
printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");

}

}
}
while(choice!=4);
return O;
}
void push()
{
if(top>=n-1)

{
printf("\n\tSTACK is over flow");

}

else
{
printf(" Enter a value to be pushed:");
scanf("%d",&x);
top++;
stack[top]=x;
}
}
void pop()
{
if(top<=-1)
{
printf("\n\t Stack is under flow");
}
else
{
printf("\n\t The popped elements is %d",stack[top]);
top--;
}
}
void display()
{
if(top>=0)
{

printf("\n The elements in STACK \n");

for(i=top; i>=0; i--)
printf("\n%d",stack[i]);

printf("\n Press Next Choice");

}

else

{
printf("\n The STACK is empty");

}

2. Stack using Linked List:

We can represent a stack as a linked list. In a stack push and pop operations are performed at
one end called top. We can perform similar operations at one end of list using top pointer.
The linked stack looks as shown in figure.

L X
.F

T.
T.

— 10
100

Figure Linked stack
represeniation

Applications of stack:
1. Stack is used by compilers to check for balancing of parentheses, brackets and braces.
2. Stack is used to evaluate a postfix expression.
3. Stack is used to convert an infix expression into postfix/prefix form.
4. In recursion, all intermediate arguments and return values are stored on the processor’s
stack.
5. During a function call the return address and arguments are pushed onto a stack and on
return they are popped off.

Converting and evaluating Algebraic expressions:

An algebraic expression is a legal combination of operators and operands. Operand is the
guantity on which a mathematical operation is performed. Operand may be a variable like x,
y, zor a constant like 5, 4, 6 etc. Operator is a symbol which signifies a mathematical or logical
operation between the operands. Examples of familiar operators include +, -, *, /, * etc.

An algebraic expression can be represented using three different notations. They are infix,
postfix and prefix notations:

Infix: It is the form of an arithmetic expression in which we fix (place) the arithmetic
operator in between the two operands.

Example:A+B

Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic
operator before (pre) its two operands. The prefix notation is called as polish notation.
Example: +AB

Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic

operator after (post) its two operands. The postfix notation is called as suffix notation and is

also referred to reverse polish notation.

Example: AB +

Conversion from infix to postfix:

Procedure to convert from infix expression to postfix expression is as follows:

1. Scan the infix expression from left to right.

2. a) If the scanned symbol is left parenthesis, push it onto the stack.
b) If the scanned symbol is an operand, then place directly in the postfix expression
(output).
c) If the symbol scanned is a right parenthesis, then go on popping all the items from the
stack and place them in the postfix expression till we get the matching left parenthesis.
d) If the scanned symbol is an operator, then go on removing all the operators from the
stack and place them in the postfix expression, if and only if the precedence of the operator
which is on the top of the stack is greater than (or greater than or equal) to the precedence
of the scanned operator and push the scanned operator onto the stack otherwise, push
the scanned operator onto the stack.

The three important features of postfix expression are:

1. The operands maintain the same order as in the equivalent infix expression.

2. The parentheses are not needed to designate the expression unambiguously.

3. While evaluating the postfix expression the priority of the operators is no longer relevant.

We consider five binary operations: +, -, *, / and S or 1 (exponentiation). For these binary
operations, the following in the order of precedence (highest to lowest):

OPERATOR PRECEDENCE

Exponentiation ($ or T or ~) Highest

* I Mext highest

+, - Lowest

Example 1:

Convert ({& — (B + C)) * D) T (E + F) infix expression to postfix form:

SYMBOL POSTFIX STRING STACK REMARKS
({

({(

A {(

(-
(-0
(-
{((-(+
{((-(+
(-

{

[=

(=

e [| OV |4 | D[
B

T
T
T
T+
T+
T

End of The input is now empty. Pop the output symbols
skring A from the stack wntil it is empiy.

s M| = |2
ol I Il I e = O o) =]
d |||
o|o(o|jo(o|jo|(o |9

+
v}

Example 2:

Convert the following infix expression A+ B * C - D/ E * H into its equivalent postfix
expression.

SYMBOL | POSTFIK STRING REMARKS
A

B
B
B C
BEC
BC D
BC D -/
BC DE -/
BC DE/ -
BC DE/H -

End of The input iz now ampty. Pop the sutput symbaols from
skring ABC* 4+ DE/HZ* - the stack until it is ampty.

BP|B(R|> P E|B B (F|B

H

Evaluation of postfix expression:
The postfix expression is evaluated easily by the use of a stack.
1. When a number is seen, it is pushed onto the stack;
2. When an operator is seen, the operator is applied to the two numbers that are
popped from the stack and the result is pushed onto the stack.
When an expression is given in postfix notation, there is no need to know any
precedence rules; this is our obvious advantage.

Example 1:

Ewvaluate the postfix expression: 6 523 + 8 * + 3 + *

SYMBOL

OPERAND
1

COPERAMD 2

WALUE

STACK

REMARKS

[

The first four symbols are placed on
the stack.

MNext a "+’ is read, so 3 and 2 ars
popped from the stack and their
sum 5, is pushed

Mext & is pushed

S

Mow a is seen, so & and 5 are
popped as 8 * 5 = 40 is pushed

Next, a "+ is seen, so 40 and 5 are
popped and 40 + 5 = 45 is pushed

MNow., 3 is pushed

Nexk, "+ pops 3 and 45 and pushes
45 + 3 = 45 is pushed

Finally, a "*" is seen and 48 and &
are popped, the resultk & * 48 =
288 is pushed

Example 2:

Ewvaluate the following postfix expression:

6E23+-382/+*2T3+

SYMBOL

OPERAND 1

OPERAND 2

WALUE STACK

I B I I I I = O O e O I

L I I I Y I O N O o I I S |

B
\n

e N I I I A < T e O e O O

B
\n

4
\n

W pd [h | [[[|

4]
I

	Subject: Data Structure Class: Second
	UNIT-II STACKS AND QUEUES
	Operations on stack:
	Representation of Stack (or) Implementation of stack:
	1. Stack using array:
	Source code for stack operations, using array:
	2. Stack using Linked List:
	Applications of stack:
	Converting and evaluating Algebraic expressions:
	Example: A + B
	Example: + A B
	Example: A B +
	Evaluation of postfix expression:

