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1. Introduction 
The ElGamal public-key cryptosystem, introduced by Taher ElGamal in 1985, is 
an asymmetric encryption algorithm based on the Discrete Logarithm Problem 
(DLP). It extends the ideas of the Diffie–Hellman key exchange and enables both 
encryption and digital signatures. 
ElGamal is widely used in secure communication protocols such as PGP, GPG, and 
cryptographic libraries that implement public-key encryption. 
ElGamal’s security depends on the hardness of computing discrete logarithms in a 
cyclic group: 
even if an attacker knows gx and gk, computing gx*k is computationally infeasible. 

2. Learning Outcomes 
By the end of this lecture, students will be able to: 

1. Explain how ElGamal encryption is derived from the Diffie–Hellman key 
exchange. 

2. Perform key generation, encryption, and decryption using ElGamal. 
3. Describe the flow of the ElGamal encryption process. 
4. Implement a Python version of the ElGamal algorithm. 
5. Identify the main advantages, disadvantages, and security considerations of 

ElGamal. 

3. Components of the ElGamal Algorithm 
ElGamal operates in the multiplicative group Z*p (The notation (read: “Z sub p 
star”) refers to the multiplicative group modulo p, where: 

 p is a prime number 
 Z*p is the set of all integers from 1 to p − 1 
 The group operation is multiplication modulo p 

Formally: 
Z*p ={1,2,3,…,p−1} 
then: 

 ( p ) is a large prime number, 
 ( g ) is a primitive generator of the group, 
 All arithmetic is done mod p. 

3.1 Key Generation 
1. Select a large prime number ( p ). 
2. Select a generator ( g ) of the group Z*p 
3. Choose a private key ( x ) such that 1 ≤ x ≤ p−2. 
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4. Compute the public key: 
h = gx mod p 

Public Key: (p, g, h)  
Private Key: ( x ) 

4. Encryption Process 
To encrypt a message ( M ) for a receiver whose public key is (p, g, h): 

1. Choose a random integer ( k ) such that ( 1 ≤ k ≤ p−2). 
2. Compute: 

C1 = gk mod p 
C2 = M * hk mod p 

Ciphertext: 
C = (C1, C2) 

5. Decryption Process 
To decrypt (C1, C2): 

1. Compute the shared secret key: 
s = C1

x mod p 
2. Compute the modular inverse ( s-1 mod p ≡ 1 mod p). 
3. Recover the original message: 

M = C2 * s-1 mod p 

Why does this work? 
Since: 
s = C1

x = (gk)x = gk*x 
And: 
C2 = M * hk = M * (g^x)^k = M * gk*x 
Then: 
M = C2 / s mod p 
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6. ElGamal Encryption Flowchart 

 
This figure illustrates: 

 Key generation 
 Encryption path 
 Decryption path 

7. Conceptual Example  

To avoid information loss when using small primes, we convert letters to numbers 
using the mapping: 

A = 0, B = 1, C = 2, … Z = 25 

And after decryption, we convert back to letters by: 

ASCII = M + 65 
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7.1 System Parameters 

 Prime: ( p = 23 ) 
 Generator: ( g = 5 ) 
 Private key: ( x = 6 ) 

Compute public component: 
h = gx mod p = 56  mod 23 = 15625 mod 23 = 8 

Public Key: (p = 23, g = 5, h = 8)  
Private Key: ( x = 6 ) 

7.2 Convert “HELLO” to Numbers 

So uppercase letters start at 0: 

Letter Number 

H 7 

E 4 

L 11 

L 11 

O 14 

7.3 Encryption (Sender) 

Choose random: 
k = 7 

Compute: 
C1 = gk mod p = 57 mod 23 = 17 

Now encrypt each symbol using: 
C2 = M * hk mod p 
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Encrypting all letters 

Letter M C₂ = M × 87 mod 23 

H 7 ( 7×87 mod 23 = 15 ) 

E 4 ( 4×87 mod 23 = 2 ) 

L 11 ( 11×87 mod 23 = 17 ) 

L 11 17 

O 14 ( 14×87 mod 23 = 7 ) 

Final Ciphertext 
C = (C1 = 17, C2 = [15, 2, 17, 17, 7]) 

7.4 Decryption (Receiver) 

Compute: 
s = C1

x mod p = 176 mod 23 = 12 

Find modular inverse: 
s-1 = 12-1 mod 23 

12*s-1≡1 mod 23 

x 12 × x mod 23 

1 12 12 

2 24 1 

3 36 13 

4 48 2 

5 60 14 

s-1 = 12-1 mod 23 = 2 
Since: 
12*2 = 24 ≡ 1 mod 23 

Recover plaintext numbers: 
M = C2 * s-1 mod p 
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Decrypting each element 

C₂ M = C₂ × 2 mod 23 

15 30 mod 23 = 7 

2 4 

17 34 mod 23 = 11 

17 11 

7 14 

Numeric Plaintext 
[7, 4, 11, 11, 14] 

7.5 Convert Numbers Back to Letters 

We use: 
ASCII = M + 65 

M ASCII Letter 

7 72 H 

4 69 E 

11 76 L 

11 76 L 

14 79 O 

8. Python Implementation 
def char_to_num(ch): 
    # Map 'A'..'Z' → 0..25 
    return ord(ch) - 65 
 
def num_to_char(n): 
    # Map 0..25 → 'A'..'Z' (via +65) 
    return chr(n + 65) 
 
def mod_inverse(a, p): 
    # Compute modular inverse of a mod p 
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    return pow(a, -1, p) 
 
# System parameters 
p = 23           # prime 
g = 5            # generator 
x = 6            # private key of receiver (A) 
 
# compute public key h = g^x mod p 
h = pow(g, x, p) 
 
print("System parameters:") 
print("p =", p, ", g =", g, ", x (private) =", x) 
print("h (public) = g^x mod p =", h) 
print("-" * 40) 
 
# 2. Plaintext message 
message = "HELLO" 
print("Original message:", message) 
 
# Convert to numbers using A=0, B=1, ..., Z=25 
M_list = [char_to_num(ch) for ch in message] 
print("Numeric plaintext (A=0 mapping):", M_list) 
 
# 3. Encryption side (sender) 
k = 7   # random key 
 
# Shared key s = h^k mod p 
C1 = pow(g, k, p) 
 
print("\nEncryption:") 
print("k =", k) 
print("C1 = g^k mod p =", C1) 
 
# Encrypt each symbol: C2 = M * s mod p 
C2_list = [(M * (h**k)) % p for M in M_list] 
print("C2 components:", C2_list) 
print("Ciphertext = (C1, C2_list) = (", C1, ",", C2_list, ")") 
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# 4. Decryption side (receiver) 
print("\nDecryption:") 
# Recompute s = C1^x mod p 
s = pow(C1, x, p) 
print("s (from C1^x mod p) =", s) 
 
# Compute modular inverse of s 
s_inv = mod_inverse(s, p) 
print("s^-1 mod p =", s_inv) 
 
# Recover each plaintext number: M = C2 * s_inv mod p 
M_dec_list = [(C2 * s_inv) % p for C2 in C2_list] 
print("Recovered numeric plaintext:", M_dec_list) 
 
# Convert numbers back to letters using +65 
decrypted_message = "".join(num_to_char(M) for M in M_dec_list) 
print("Decrypted message:", decrypted_message) 
 
# 5. Check correctness 
if decrypted_message == message: 
    print("\n ElGamal successful: plaintext recovered correctly.") 
else: 
    print("\n Error: plaintext not recovered correctly.") 

9. Applications 
ElGamal is used in: 

 Secure message encryption 
 Digital signatures 
 GPG (GNU Privacy Guard) / PGP (Pretty Good Privacy) 
 Cryptographic libraries 
 Distributed secure key exchange 

10. Advantages and Disadvantages 
Advantages 

 High security based on DLP(Discrete Logarithm Problem) 
 Supports both encryption and signatures 
 Easy key distribution due to asymmetric nature 
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Disadvantages 
 Slower than RSA 
 Requires larger key sizes 
 Vulnerable to DLP-related attacks if parameters are weak 

11. Conclusion 

The ElGamal cryptosystem is a powerful asymmetric encryption technique that 
offers strong security through the discrete logarithm problem. 
It is widely used in modern cryptosystems and remains foundational in public-key 
cryptography. 
Although its ciphertext expansion and computational cost are higher than RSA, its 
randomness and security properties make it valuable for secure communications. 


