

 مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م الاـــــــ ـــس ــق
Department of Cyber Security

Subject:

Public key encryption

Class:

third

Lecturer:

Asst. Lecturer Qusai Al-Durrah

Lecture (7 & 8):

ElGamal Public-Key Encryption

P a g e | 2

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

1. Introduction
The ElGamal public-key cryptosystem, introduced by Taher ElGamal in 1985, is
an asymmetric encryption algorithm based on the Discrete Logarithm Problem
(DLP). It extends the ideas of the Diffie–Hellman key exchange and enables both
encryption and digital signatures.
ElGamal is widely used in secure communication protocols such as PGP, GPG, and
cryptographic libraries that implement public-key encryption.
ElGamal’s security depends on the hardness of computing discrete logarithms in a
cyclic group:
even if an attacker knows gx and gk, computing gx*k is computationally infeasible.

2. Learning Outcomes
By the end of this lecture, students will be able to:

1. Explain how ElGamal encryption is derived from the Diffie–Hellman key
exchange.

2. Perform key generation, encryption, and decryption using ElGamal.
3. Describe the flow of the ElGamal encryption process.
4. Implement a Python version of the ElGamal algorithm.
5. Identify the main advantages, disadvantages, and security considerations of

ElGamal.

3. Components of the ElGamal Algorithm
ElGamal operates in the multiplicative group Z*p (The notation (read: “Z sub p
star”) refers to the multiplicative group modulo p, where:

 p is a prime number
 Z*p is the set of all integers from 1 to p − 1
 The group operation is multiplication modulo p

Formally:
Z*p ={1,2,3,…,p−1}
then:

 (p) is a large prime number,
 (g) is a primitive generator of the group,
 All arithmetic is done mod p.

3.1 Key Generation
1. Select a large prime number (p).
2. Select a generator (g) of the group Z*p
3. Choose a private key (x) such that 1 ≤ x ≤ p−2.

P a g e | 3

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

4. Compute the public key:
h = gx mod p

Public Key: (p, g, h)
Private Key: (x)

4. Encryption Process
To encrypt a message (M) for a receiver whose public key is (p, g, h):

1. Choose a random integer (k) such that (1 ≤ k ≤ p−2).
2. Compute:

C1 = gk mod p
C2 = M * hk mod p

Ciphertext:
C = (C1, C2)

5. Decryption Process
To decrypt (C1, C2):

1. Compute the shared secret key:
s = C1

x mod p
2. Compute the modular inverse (s-1 mod p ≡ 1 mod p).
3. Recover the original message:

M = C2 * s-1 mod p

Why does this work?
Since:
s = C1

x = (gk)x = gk*x
And:
C2 = M * hk = M * (g^x)^k = M * gk*x
Then:
M = C2 / s mod p

P a g e | 4

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

6. ElGamal Encryption Flowchart

This figure illustrates:

 Key generation
 Encryption path
 Decryption path

7. Conceptual Example

To avoid information loss when using small primes, we convert letters to numbers
using the mapping:

A = 0, B = 1, C = 2, … Z = 25

And after decryption, we convert back to letters by:

ASCII = M + 65

P a g e | 5

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

7.1 System Parameters

 Prime: (p = 23)
 Generator: (g = 5)
 Private key: (x = 6)

Compute public component:
h = gx mod p = 56 mod 23 = 15625 mod 23 = 8

Public Key: (p = 23, g = 5, h = 8)
Private Key: (x = 6)

7.2 Convert “HELLO” to Numbers

So uppercase letters start at 0:

Letter Number

H 7

E 4

L 11

L 11

O 14

7.3 Encryption (Sender)

Choose random:
k = 7

Compute:
C1 = gk mod p = 57 mod 23 = 17

Now encrypt each symbol using:
C2 = M * hk mod p

P a g e | 6

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Encrypting all letters

Letter M C₂ = M × 87 mod 23

H 7 (7×87 mod 23 = 15)

E 4 (4×87 mod 23 = 2)

L 11 (11×87 mod 23 = 17)

L 11 17

O 14 (14×87 mod 23 = 7)

Final Ciphertext
C = (C1 = 17, C2 = [15, 2, 17, 17, 7])

7.4 Decryption (Receiver)

Compute:
s = C1

x mod p = 176 mod 23 = 12

Find modular inverse:
s-1 = 12-1 mod 23

12*s-1≡1 mod 23

x 12 × x mod 23

1 12 12

2 24 1

3 36 13

4 48 2

5 60 14

s-1 = 12-1 mod 23 = 2
Since:
12*2 = 24 ≡ 1 mod 23

Recover plaintext numbers:
M = C2 * s-1 mod p

P a g e | 7

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Decrypting each element

C₂ M = C₂ × 2 mod 23

15 30 mod 23 = 7

2 4

17 34 mod 23 = 11

17 11

7 14

Numeric Plaintext
[7, 4, 11, 11, 14]

7.5 Convert Numbers Back to Letters

We use:
ASCII = M + 65

M ASCII Letter

7 72 H

4 69 E

11 76 L

11 76 L

14 79 O

8. Python Implementation
def char_to_num(ch):
 # Map 'A'..'Z' → 0..25
 return ord(ch) - 65

def num_to_char(n):
 # Map 0..25 → 'A'..'Z' (via +65)
 return chr(n + 65)

def mod_inverse(a, p):
 # Compute modular inverse of a mod p

P a g e | 8

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

 return pow(a, -1, p)

System parameters
p = 23 # prime
g = 5 # generator
x = 6 # private key of receiver (A)

compute public key h = g^x mod p
h = pow(g, x, p)

print("System parameters:")
print("p =", p, ", g =", g, ", x (private) =", x)
print("h (public) = g^x mod p =", h)
print("-" * 40)

2. Plaintext message
message = "HELLO"
print("Original message:", message)

Convert to numbers using A=0, B=1, ..., Z=25
M_list = [char_to_num(ch) for ch in message]
print("Numeric plaintext (A=0 mapping):", M_list)

3. Encryption side (sender)
k = 7 # random key

Shared key s = h^k mod p
C1 = pow(g, k, p)

print("\nEncryption:")
print("k =", k)
print("C1 = g^k mod p =", C1)

Encrypt each symbol: C2 = M * s mod p
C2_list = [(M * (h**k)) % p for M in M_list]
print("C2 components:", C2_list)
print("Ciphertext = (C1, C2_list) = (", C1, ",", C2_list, ")")

P a g e | 9

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

4. Decryption side (receiver)
print("\nDecryption:")
Recompute s = C1^x mod p
s = pow(C1, x, p)
print("s (from C1^x mod p) =", s)

Compute modular inverse of s
s_inv = mod_inverse(s, p)
print("s^-1 mod p =", s_inv)

Recover each plaintext number: M = C2 * s_inv mod p
M_dec_list = [(C2 * s_inv) % p for C2 in C2_list]
print("Recovered numeric plaintext:", M_dec_list)

Convert numbers back to letters using +65
decrypted_message = "".join(num_to_char(M) for M in M_dec_list)
print("Decrypted message:", decrypted_message)

5. Check correctness
if decrypted_message == message:
 print("\n ElGamal successful: plaintext recovered correctly.")
else:
 print("\n Error: plaintext not recovered correctly.")

9. Applications
ElGamal is used in:

 Secure message encryption
 Digital signatures
 GPG (GNU Privacy Guard) / PGP (Pretty Good Privacy)
 Cryptographic libraries
 Distributed secure key exchange

10. Advantages and Disadvantages
Advantages

 High security based on DLP(Discrete Logarithm Problem)
 Supports both encryption and signatures
 Easy key distribution due to asymmetric nature

P a g e | 10

Department of Cyber Security

Public key encrypƟon – Lecture (7 & 8)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Disadvantages
 Slower than RSA
 Requires larger key sizes
 Vulnerable to DLP-related attacks if parameters are weak

11. Conclusion

The ElGamal cryptosystem is a powerful asymmetric encryption technique that
offers strong security through the discrete logarithm problem.
It is widely used in modern cryptosystems and remains foundational in public-key
cryptography.
Although its ciphertext expansion and computational cost are higher than RSA, its
randomness and security properties make it valuable for secure communications.

