

P a g e | 1

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security

Subject:

Object Oriented Programming (OOP)

Class:

Second

Lecturer:

Dr. Abdulkadhem A. Abdulkadhem

Lecture: (6)

Friend Functions and Friend Classes

P a g e | 2

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Friend Functions and Friend Classes in OOP

1. Introduction to Encapsulation and Access Specifiers

Before diving into friend functions and friend classes, it's important to understand a core

principle of Object-Oriented Programming (OOP) known as encapsulation.

Encapsulation:

 Encapsulation is the concept of bundling data (variables) and the methods (functions)

that operate on that data into a single unit, the class.

 It restricts direct access to some of the class's components, which ensures data integrity

and hides the internal implementation details.

Access Specifiers:

There are three common access specifiers used to control access to class members:

 public: Members are accessible from outside the class.

 private: Members are only accessible within the class itself.

 protected: Members are accessible in the class and its derived classes.

In most cases, class data members are kept private to protect them from unauthorized access or

modification.

However, there are situations where we may need to allow an external function or another class

to access these private members. This is where friend functions and friend classes come into

play.

2. Friend Functions

What is a Friend Function?

A friend function is a non-member function that is granted access to the private and protected

members of a class. Although it is not a part of the class, it can access its private data as if it

were.

P a g e | 3

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Why Use a Friend Function?

1. External Function Needs Access: Sometimes, you need an external function to access

the private members of a class, but you don't want to make the members public.

2. Improving Flexibility: A friend function can be useful when a function is logically

connected to the class but doesn’t need to be a member function.

Syntax of Friend Function

The friend function is declared inside the class using the keyword friend, but it is defined

outside the class.

class ClassName {

 private:

 int data;

 public:

 ClassName(int value) : data(value) {}

 // Friend function declaration

 friend void displayData(ClassName obj);

};

// Friend function definition

void displayData(ClassName obj) {

 cout << "Data: " << obj.data << endl; // Accessing private member

}

Code Example 1: Friend Function

Code no. 1. تنفيذ في المختبر

#include <iostream>

using namespace std;

class Box {

private:

 int length;

public:

 Box(int len) : length(len){} // Constructor to initialize length

 friend void printLength(Box box);

};

// Friend function definition

void printLength(Box box) {

 // Can access the private member of Box class

 cout << "Length of the box: " << box.length << endl;

}

P a g e | 4

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

int main() {

 Box v(15);

 printLength(v); // Calling the friend function

 return 0;

}

Explanation:

 The Box class has a private member length.

 printLength is a friend function of the Box class, so it can access the private member

length.

 In the main function, an object myBox is created, and printLength(myBox) prints the

value of the private member length of the myBox object.

Code Example 2: Friend Function

Code no. 2. تنفيذ في المختبر
#include <iostream>

using namespace std;

class Cylinder {

private:

 double radius;

 double height;

public:

 // Constructor to initialize radius and height

 Cylinder(double r, double h) : radius(r), height(h) {}

 // Friend function declaration

 friend double calculateVolume(Cylinder cyl);

};

// Friend function definition

double calculateVolume(Cylinder cyl) {

 // Can access the private members of Cylinder class

 return 3.14 * cyl.radius * cyl.radius * cyl.height;

}

int main() {

 Cylinder z(3.0, 5.0);

 cout << "Volume of Cylinder: " << calculateVolume(z) << endl;

// Calling the friend function

 return 0;

}

P a g e | 5

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Explanation:

 The Cylinder class has two private members, radius and height.

 calculateVolume is a friend function of the Cylinder class, allowing it to access the

private members radius and height.

 In the main function, a Cylinder object named myCylinder is created, and

calculateVolume(myCylinder) calculates and prints the volume of the cylinder using

the private data members of myCylinder

3. Friend Classes

What is a Friend Class?

A friend class is a class that is granted access to the private and protected members of

another class. If a class is declared as a friend, all of its member functions can access the private

members of the other class.

Why Use a Friend Class?

1. Tightly Related Classes: Sometimes two classes are closely related, and they need to

share private members.

2. Complex Relationships: In scenarios where multiple classes interact heavily, declaring

one class as a friend of another simplifies access control, avoiding the need for complex

getter/setter methods.

Syntax of Friend Class

A class is made a friend of another class using the friend keyword in the class declaration.

class B; // Forward declaration of class B

class A {

 private:

 int privateData;

 public:

 A(int value) : privateData(value) {}

 // Declare class B as a friend of class A

 friend class B;

};

class B {

 public:

 void showAData(A obj) {

 // Accessing the private member of class A

 cout << "Private data of class A: " << obj.privateData << endl;

 }

};

P a g e | 6

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Code Example 3: Friend Class

#include <iostream>

using namespace std;

class Square; // Forward declaration of Square

class Rectangle {

private:

 int width, height;

public:

 Rectangle(int w, int h) : width(w), height(h) {}

 // Friend class declaration

 friend class Square;

};

class Square {

public:

 int calculateArea(Rectangle rect) {

 // Can access the private members of Rectangle

 return rect.width * rect.height;

 }

};

int main() {

 Rectangle rect(4, 5);

 Square sq;

 cout << "Area of Rectangle: " << sq.calculateArea(rect) << endl;

 return 0;

}

Explanation:

 The class Square is declared as a friend of the Rectangle class.

 Because of this friendship, the member function calculateArea of the Square class can

access the private members width and height of the Rectangle class.

 This approach allows Square to calculate the area of a Rectangle object even though

width and height are private in Rectangle.

P a g e | 7

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Code Example 4: Friend Class

Code no. 4. تنفيذ في المختبر
#include <iostream>

#include <string>

using namespace std;

class Book {

private:

 string title;

 string author;

 int pages;

public:

 // Constructor to initialize title and author

 Book(string t, string a, int p) : title(t), author(a), pages(p) {}

 // Declare Library as a friend class

 friend class Library;

};

class Library {

public:
 // Method to display book details, accessing private members of Book

 void displayBookDetails(const Book& book);

};

// Friend class function definition

void Library::displayBookDetails(const Book& book) {

 // Access private members of Book

 cout << "Book Title: " << book.title << endl;

 cout << "Author: " << book.author << endl;

 cout << "No. of Pages: " << book.pages << endl;

}

int main() {

 Book myBook("Object oriented programming", "Abdulkadhem",350);

 Library myLibrary;

 myLibrary.displayBookDetails(myBook); // Using Library to display

details of Book

 return 0;

}

Explanation:

 The Book class has three private members, title , author and pages.

 Library is declared as a friend class of Book, granting it access to Book's private

members.

 The displayBookDetails method in Library accesses the private members of Book to

display its details.

P a g e | 8

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 In the main function, a Book object myBook is created, and

myLibrary.displayBookDetails(myBook) calls the friend class method to print the

title and author of myBook.

4. Key Points about Friend Functions and Classes

Friend Functions:

 Declared inside the class but defined outside the class.

 Not a member function of the class but has access to its private and protected members.

 Can be useful when an external function needs to access private data of the class without

being a member of the class.

Friend Classes:

 A class can grant another class access to its private and protected members by declaring it

as a friend.

 All member functions of the friend class can access the private members of the original

class.

 Useful when classes have a close relationship and need direct access to each other’s

private data.

Important Notes:

 Friendship is not mutual: If class A declares class B as a friend, class B can access

private members of class A, but class A cannot access private members of class B unless

explicitly declared as a friend in class B.

 Friendship is not inherited: If class B is a friend of class A, the derived classes of B do

not automatically become friends of class A.

 Friendship breaks encapsulation to some extent, so it should be used sparingly and

only when necessary to maintain clarity and modularity in the code.

5. Advantages and Disadvantages

Advantages:

 Controlled Access: Friend functions and classes provide controlled access to private

members without exposing them publicly.

P a g e | 9

Department of Cyber Security

Object Oriented Programming – Lecture (6)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 Flexibility: They offer a flexible way to allow certain external functions or classes to

interact with a class’s private data, especially when these functions or classes are

logically related but don’t belong to the class itself.

 Better Design: They can simplify code when classes have strong relationships, avoiding

the need for complex getter and setter methods.

Disadvantages:

 Violation of Encapsulation: One of the core principles of OOP is encapsulation, and

using friend functions or classes breaks this principle to some extent by allowing external

entities to access private data.

 Tightly Coupled Code: Excessive use of friend functions or classes can lead to tightly

coupled code, which can make maintenance and future extensions more difficult.

 Misuse: If overused, it can lead to poorly designed code that is difficult to debug and

understand.

Questions about the lecture

1. What is the main purpose of encapsulation in Object-Oriented Programming (OOP)?

2. Which access specifier allows members to be accessed only within the same class?

3. Why might we use a friend function instead of making a data member public?

4. In which part of the class is a friend function declared, and where is it defined?

5. How can a friend function access private members of a class if it is not a member

function?

6. What keyword is used to declare a function or class as a friend inside another class?

7. What is the key difference between a friend function and a member function in terms of

class membership?

8. How does a friend class differ from a friend function in terms of access privileges?

9. Why should friend functions and friend classes be used sparingly in software design?

10. What happens if class A declares class B as a friend—does class A automatically gain

access to class B’s private members?

