|1 &% Il & ks
AL MUSTAQBAL UNIVERSITY

DEPARTMENT OF CYBER SECURITY

SUBJECT:
SEARCHING AND SORTING ALGORITHMS
CLASS:

SECOND

LECTURER: M.SC.MUNTATHER AL-MUSSAWEE

LECTURE: (1)

INTRODUCTION

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (1)

Second Stage

There are basically two aspects of computer programming. One is data

organization also commonly called as data structures. Till now we have seen about

data structures and the techniques and algorithms used to access them. The other

part of computer programming involves choosing the appropriate algorithm to

solve the problem. Data structures and algorithms are linked each other. After

developing programming techniques to represent information, it is logical to
proceed to manipulate it. This lecture introduces this important aspect of problem

solving.

INTRODUCTION TO SEARCHING AND SORTING ALGORITHMS

3ok o8 Condl lghaul o (JSAT Bas duoilssdl 0dd dsly Oluajlgdl wle O o buaad US) Camdl dualgs- piad

wogadl e § 65 LS lalad ¢y J315 Ao e Condl) JUYI dis Ml pa31 213j9 axad Bauxd Bgiae
aad Eoy dunlss adseind Al @lymall T O o> Find & Replace duols e $gizs (glly dolal

oxdl Jlro 3 Olusjylgdl &l o Loy 428)l Boyer-Moore Searching

O Olelyll go glllis el Bale SS0gml el @l OB ges slwl w

dpa) g3l od pusiad @l Olxiaially pusalsdlly Condl OBa 3 Logias B ©liuks goidll 1y prefix searching
L) 8 <o By T pgal il e

o i ol pasviad Ola)ls3dl e 3T g Jigd ddT obS3 e e Comdl dusjlgs s Y

dads LS laled (&iblsdl Sl a0y G5 of 4 e Codb duajlgsl pod G cdis Coxd CS Gl paill e
033 e Olia) gl ok Al dataly &3] s3] s Ssion b LS wis Office Word ol &0l dis Google
Soundex Searching Wygal cag y=ll (3gsall

lyall Glall by doY Gillas x93 3529 (36 Cordl A Comy Slhailgs psviad Slawga pdll Clabiand claid 1o

835 8 o5 Condls Ll dasp 055 aablill bl delgh Of Lasg ediand

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (1)

Second Stage

oLl dopnd & sty Lol i 3 el ode g Cond gy Ol g drgs o) iy b iy 35S

g9l 102 ol 9«53 ygal Bucg Hash Table Jin dilize adlie o aini 31 Olujylss Ll e)l g

Multiple pattern searching « &lwi)lgsdl (e

Olaa) gzl 030 Jia pdieiad @) ©lug)l Slaliae (o ksl g (o) gl ol (p0 3 9

. ClamAV Jio

Searching is an operation or a technique that helps finds the place of a given
element or value in the list. Any search is said to be successful or unsuccessful
depending upon whether the element that is being searched is found or not. Some
of the standard searching technique that is being followed in data structure is listed

below:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure.
It is a way in which the elements are organized systematically for some purpose. For
example, a dictionary in which words is arranged in alphabetical order and
telephone director in which the subscriber names are listed in alphabetical order.

There are many sorting techniques out of which we study the following.

. Bubble sort
. Quick sort
. Selection sort and

. Heap sort

There are two types of sorting techniques:

Page |3

QWY Dy
N> &

&
<&

NERSITY
\»‘\

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (1)

Second Stage

1. Internal sorting

2. External sorting

If all the elements to be sorted are present in the main memory, then such sorting

is called internal sorting on the other hand, if some of the elements to be sorted

are kept on the secondary storage, it is called external sorting. Here we study only

internal sorting techniques.

1. LINEAR SEARCH:

This is the simplest of all searching techniques. In this technique, an ordered or
unordered list will be searched one by one from the beginning until the desired
element is found. If the desired element is found in the list, then the search is

successful otherwise unsuccessful.

Suppose there are “n” elements organized sequentially on a List. The number of
comparisons required to retrieve an element from the list, purely depends on
where the element is stored in the list. If it is the first element, one comparison will

do; if it is second element two comparisons are necessary and so on. On an average

you need [(n+1)/2] comparisons to search an element. If search is not successful,

o _ 7

you would need “n” comparisons.

The time complexity of linear search is O(n).

‘3‘5““\\“‘“ DEp4 ”’;’, .
$ Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

Q‘\\\;ERSWV

S

Second Stage

Algorithm LinearSearch (Array A, Value x)
Step 1: Setito 1
Step 2: if 1 > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4: Setitoi+ 1
Step 5: Go to Step 2
Step 6: Print Element x Found at index 1 and go to step 8
Step 7: Print element not found
Step 8: Exit

Here is a simple C++ program that demonstrates sequential search (also known as
linear search). This search algorithm checks each element in a list (or array) one by
one to find the target value.

Sequential Search Example

#include <iostream>
using namespace std;

// Function for sequential search
int sequentialSearch(int arr[], int size, int target) {
for (int i = @; i < size; i++) {
if (arr[i] == target) {
return i; // Return index if target is found
}
}

return -1; // Return -1 if target is not found

main() {
int arr[] = {10, 20, 30, 40, 50}; // Example array
int target;

cout << "Enter the value to search: ";
cin >> target;

int size = sizeof(arr) / sizeof(arr[e]); // Calculate the size of the array
int result = sequentialSearch(arr, size, target);

if (result = -1) {

cout << "Element found at index: " << result << endl;
} else {

cout << "Element not found in the array." << endl;

}

return 0;

@@\m\w Depy, o,
&
<

Department of Cyber Security

Q‘\\QE“‘-""V

S

Searching And Sorting Algorithms — Lecture (1)
Second Stage

Example 1:
Let us illustrate linear search on the following 9 elements:

Index 0 1 3
Elements | -15| -6 P

Searching different elements is as follows:

1. Searching for x =7, Search successful, data found at 3rd position.

2. Searching for x = 82, Search successful, data found at 7th position.

3. Searching for x =42, Search un-successful, data not found.

Example 2: Let us take an example of an array A[7]={5,2,1,6,3,7,8}. Array A has 7
items. Let us assume we are looking for 7 in the array. Targeted item=7.
Here, we have

Index 0 1 2 3 4

Element 5 2
A[7]1={5,2,1,6,3,7,8}

1 6 3

At first, When i=0 (A[0]=5; X=7) not matched
i++ now, i=1 (A[1]=2; X=7)

not matched
i++ now, i=2 (A[2])=1; X=7)

not matched

i++ when, i=5 (A[5]=7; X=7) Match Found
Hence, Element X=7 found at index 5.

WITY DEp,
égﬂ M%k :
Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

Second Stage

A RECURSIVE PROGRAM FOR LINEAR SEARCH

Here is a recursive C++ program to perform linear (sequential) search:

Recursive Linear Search

#include <iostream>
using namespace std;

// Recursive function for linear search
int recursivelinearSearch(int arr[], int size, int target, int index = @) {
// Base case: if index exceeds the size of the array, target is not found
if (index >= size) {
return -1;
¥
// Check if the current element matches the target
if (arr[index] == target) {
return index;
3
// Recursive call to check the next element
return recursivelinearSearch(arr, size, target, index + 1);

main() {

int arr[] = {10, 20, 30, 40, 50}; // Example arraﬂ
int target;

cout << "Enter the value to search: ";
cin >> target;

int size = sizeof(arr) / sizeof(arr[@]); // Calculate the size of the array
int result = recursivelinearSearch(arr, size, target);

if (result != -1) {

cout << "Element found at index: " << result << endl;
} else {

cout << "Element not found in the array." << endl;

return 0;

@5@\\“‘“ nspﬂ%
&$ Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

N;_RSITY
\»‘\

Second Stage

EXPLANATION:

1. Base Case:
o Ifthe index reaches or exceeds the size of the array, it means the target is not
present, and -1 is returned.
2. Recursive Case:
o Ifthe current element (arr[index]) matches the target, return the index.
o Otherwise, recursively call the function with index + 1 to check the next
element.
3. Main Function:

o The user inputs a target value to search in the array. The recursive function is
called with the initial index set to 0.

<+ EXAMPLE EXECUTION:

If the array 1s {10, 20, 30, 40, 50} and the user searches for 30:

o The function will check elements at indices 0, 1, and 2, and then return 2 as the result.

2.BINARY SEARCH

Binary Search is used with sorted array or list. In binary search, we follow the

following steps:
1. We start by comparing the element to be searched with the element in the
middle of the list/array.

. If we get a match, we return the index of the middle element.

. If we do not get a match, we check whether the element to be searched is
less or greater than in value than the middle element.

. If the element/number to be searched is greater in value than the middle
number, then we pick the elements on the right side of the middle
element(as the list/array is sorted, hence on the right, we will have all the
numbers greater than the middle number), and start again from the step 1.

. If the element/number to be searched is lesser in value than the middle
number, then we pick the elements on the left side of the middle element,
and start again from the step 1.

Page | 8

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (1)

Second Stage

Binary Search is useful when there are large number of elements in an array and
they are sorted. So a necessary condition for Binary search to work is that the
list/array should be sorted.

< FEATURES OF BINARY SEARCH

1. Itis great to search through large sorted arrays.
2. It has a time complexity of O(log n) which is a very good time complexity. It
has a simple implementation.

Binary search is a fast search algorithm with run-time complexity of I(log n). This

search algorithm works on the principle of divide and conquers. For this algorithm
to work properly, the data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the
collection. If a match occurs, then the index of item is returned. If the middle item
is greater than the item, then the item is searched in the sub-array to the left of the
middle item. Otherwise, the item is searched for in the sub-array to the right of the
middle item. This process continues on the sub- array as well until the size of the
sub array reduces to zero.

< HOwW BINARY SEARCH WORKS?

For a binary search to work, it is mandatory for the target array to be sorted. We
shall learn the process of binary search with a pictorial example. The following is
our sorted array and let us assume that we need to search the location of value 31
using binary search.

10 14 19 260727 31 33 35 42 44
0 1 2 3 -+ S 6 7 8 9

First, we shall determine half of the array by using this formula —
mid = low + (high - low) / 2
Hereitis, 0+ (9-0) /2 =4 (integer value of 4.5). So, 4 is the mid of the array.

Page |9

Q}%?’“““\TY BEp4 ‘,’4,
$ Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

Q‘\\\;ERSWV

S

Second Stage

Now we compare the value stored at location 4, with the value being searched, i.e.
31. We find that the value at location 4 is 27, which is not a match. As the value is
greater than 27 and we have a sorted array, so we also know that the target value

must be in the upper portion of the array.

R [27][31][33](3:][4:)(4:]]

0 1 2 3 4 5 6
We change our low to mid + 1 and find the new mid value again.
low =mid +1
mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target

10 14 19 26 27 l3l||33| 44
6 7 8 9

0 1 2 3 -t 5

value 31.

The value stored at location 7 is not a match, rather it is more than what we are
looking for. So, the value must be in the lower part from this location.

[10 14 19 (26 @27 [31][33] 35 42 44_]
4 = 6 7 8

0 1 2 3 9

@@\m\w Depy, 9
&
<

Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

Q‘\\\;ERSWV

S

Second Stage

42 44]
0 1 2 3 £ 8 ¢ 9

We compare the value stored at location 5 with our target value. We find that it is
a match.

[10 14 19 26 27 @

0 1 2 3 4 5 6

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of
comparisons to be made to very less numbers.

<+ EXAMPLE 1:

Let us illustrate binary search on the following 12 elements:

Index 1 21 3 - 3 6 71 8
Elements | #4 7 8 9| 16| 20| 24| 38

If we are searching for x = 4: (This needs 3 comparisons)
low =1, high =12, mid = 13/2 = 6, check 20

low =1, high =5, mid =6/2 = 3, check 8

low =1, high =2, mid = 3/2 = 1, check 4, found

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (1)

Second Stage

If we are searching for x = 7: (This needs 4 comparisons)
low =1, high =12, mid = 13/2 = 6, check 20

low =1, high =5, mid =6/2 =3, check 8

low =1, high =2, mid=3/2=1, check 4

low = 2, high =2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)
low =1, high = 12, mid = 13/2 = 6, check 20
low =1, high =5, mid =6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)
low =1, high =12, mid = 13/2 = 6, check 20

low =1, high =5, mid =6/2 =3, check 8

low =4, high =5, mid =9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)
low =1, high =12, mid = 13/2 = 6, check 20

low =1, high =5, mid =6/2 = 3, check 8

low =4, high =5, mid =9/2 = 4, check 9

low =5, high =5, mid = 10/2 =5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)
low =1, high =12, mid = 13/2 = 6, check 20, found
s AN ITERATIVE BINARY SEARCH PROGRAM

Here is a C++ program for binary search. Binary search is a more efficient search
algorithm compared to linear search, but it requires the array to be sorted.

YS‘“““Y DEPM’
Y
N Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

Second Stage

Binary Search

#include <iostream:
using namespace std;

ff Function for binary search
int binarySearch(int arr[], int size, int target) {
int left = @, right = size - 1;

while (left <= right) {
int mid = left + (right - left) / 2; // Calculate mid to prevent overflow

ff Check if target is at mid
if (arr[mid] == target) {
return mid;
¥
ff If target is smaller than mid, search in the left subarray
else if (arr[mid] » target) {
right = mid - 1;

¥
/

{ If target is larger than mid, search in the right subarray

return -1; f/ Return -1 if target is not found

main{) {

int arr[] = {1@, 28, 38, 48, 58}; // Sorted array
int target;

cout << "Enter the value to search: ";
cin »» target;

int size = sizeof(arr) / sizeof(arr[@]); // Calculate the size of the array
int result = binarySearch{arr, size, target);

if (result != -1) {

cout << "Element found at index:
} else {

cout << "Element net found in the array.” << endl;

<< result << endl;

return @;

Page |13

QWY Dep
N> o

& Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

@\NERSITY

&

Second Stage

RECURSIVE BINARY SEARCH:

Recursive Binary Search

#include <iostream>
using namespace std;

f{ Recursive function for binary search
int recursiveBinarySearch(int arr[], int left, int right, int target) {
/{ Base case: If left index exceeds right, target is not found
if (left » right) {
return -1;

int mid = left + (right - left) / 2; // Calculate mid to prevent overflow

ff Check if target is at mid
if (arr[mid] == target) {

return mid;
¥
/f If target is smaller than mid, search in the left subarray
else if (arr[mid] > target) {

return recursiveBinarySearch(arr, left, mid - 1, target);
¥
/f If target is larger than mid, search in the right subarray
else {

return recursiveBinarySearch(arr, mid + 1, right, target);

main{) {

int arr[] = {1@, 28, 38, 48, 58}; // Sorted array
int target;

cout << "Enter the wvalus to search: ";
cin »»> target;

int size = sizeof(arr) / sizeof(arr[8]); // Calculate the size of the array

int result = recursiveBinarySearch{arr, 8, size - 1, target);

if (result != -1) {
cout << "Element Tound at index:
} else {

cout << "Element not found in the array.

<< result << endl;

"

<< endl;

return 8;

Page | 14

Department of Cyber Security

Searching And Sorting Algorithms — Lecture (1)

Second Stage

EXPLANATION:

1. Binary Search (Iterative and Recursive):

e}

O

e}

O

Works by dividing the search space into halves.
Continually compares the middle element to the target.
Eliminates half the search space in each step.

Stops when the target is found or the search space becomes empty.

2. Main Differences:

O

O

Iterative: Uses a loop to perform the search.

Recursive: Calls itself with updated bounds (1eft and right).

3. Input Requirement:

e}

The array must be sorted for binary search to work.

	1. Linear or sequential search
	1. Internal sorting
	1. Linear Search:
	Algorithm
	Example 1:
	❖ A Recursive program for linear search
	❖ Explanation:
	❖ Example Execution:
	2. BINARY SEARCH
	❖ Features of Binary Search
	❖ How Binary Search Works?
	❖ Example 1:
	If we are searching for x = 4: (This needs 3 comparisons)
	If we are searching for x = 7: (This needs 4 comparisons)
	If we are searching for x = 8: (This needs 2 comparisons)
	If we are searching for x = 9: (This needs 3 comparisons)
	If we are searching for x = 16: (This needs 4 comparisons)
	If we are searching for x = 20: (This needs 1 comparison)
	❖ An Iterative Binary Search Program
	❖ Recursive Binary Search:

