

 الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي الأمــــــــــــــــــــــــــن قــســــــــــم
 DEPARTMENT OF CYBER SECURITY

SUBJECT:

SEARCHING AND SORTING ALGORITHMS

CLASS:

SECOND

LECTURER: M.SC.MUNTATHER AL-MUSSAWEE

LECTURE: (1)

INTRODUCTION

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 2

There are basically two aspects of computer programming. One is data

organization also commonly called as data structures. Till now we have seen about

data structures and the techniques and algorithms used to access them. The other

part of computer programming involves choosing the appropriate algorithm to

solve the problem. Data structures and algorithms are linked each other. After

developing programming techniques to represent information, it is logical to

proceed to manipulate it. This lecture introduces this important aspect of problem

solving.

INTRODUCTION TO SEARCHING AND SORTING ALGORITHMS

 عدد عن البحث من أبسطها أشكال، عدة الخوارزمية هذه وتتخذ الخوارزميات علم أركان من أساسيا ركنا البحث خوارزمية عتب ت
 ف

حددة مصفوفة كما ترى تماما نص، داخل كلمة عن البحث إلى الانتقال عند تعقيدا الأمر ويزداد الحجم م
 النصوص محررات ف

 تسم بحث خوارزميه تستخدم الحالية المحررات أغلب أن حيث Replace & Find خاصية على تحتوي لت العادية وا

 Searching Moore-Boyer عد ت ال الخوارزميات أسرع من تقريبا ت
 .البحث مجال ف

 حروف مجموعة لدينا لوكانت فماذا آخر، نوع من بحث أيضا هناك

سم ما النوع هذا ب الخوارزميات من ونريد إيجاد جميع الكلمات الت تبدأ بهذه الحروف؟؟ عادة ي

searching prefix ة تطبيقات ك النوع ولهذا خصوصا ثبر
 الخوارزمية هذه تستخدم لت ا والمتصفحات والقواميس البحث محركات ف

 .سابقا زرته قد بحرف كنت يبدأ لموقع كتابتك عند

ستخدم الخوارزميات من آخر نوع فهناك آنفا، ذكرناه ما على البحث خوارزمية صر تقت لا قريب نص لإيجاد ي

 كما يفعل الخاطئة، تماما الكلمات من قريبة كلمات 5 أو 4 عن بالبحث الخوارزمية تقوم حيث عنه، تبحث الذي كنت النص من

Google جمة أولب ا عند Word Office الوزن على الخوارزميات هذه وتعتمد أغلبعلى أخطاء إملائية كتابة نص يحتوي عند

 الص
 Searching Soundex أشهرها ومن للحرف وت

 المراد الملف بيانات لأحدمطابق توقيع وجود عن للبحث سريعة بحث خوارزميات تستخدم يوسات ي الف فمضادات فقط، هذا ليس

 توقيع كل عن فالبحث للغاية ضخمة تكون التواقيع بيانات قواعد أن وبما فحصه،

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 3

 تواقيع عده عن البحث بإمكانها توجد خوارزميات حيث الأفضل، بطيئا جدا وهناك سيكون

 للقيام شجرية بنية وتستخدماللحظة نفس ف

سم و أخرى، أمور وعدة Table Hashمثل مختلفة مفاهيم على تعتمد أخرى خوارزميات أيضا هناك الأمر، بهذا النوع هذا ي

 searching pattern Multiple ب الخوارزميات من

 الخوارزميات هذه مثل تستخدم لت ا وساتب الف مضادات من العديد وهناك الخوارزميات، أصعب من هو و

. ClamAV مثل

Searching is an operation or a technique that helps finds the place of a given

element or value in the list. Any search is said to be successful or unsuccessful

depending upon whether the element that is being searched is found or not. Some

of the standard searching technique that is being followed in data structure is listed

below:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure.

It is a way in which the elements are organized systematically for some purpose. For

example, a dictionary in which words is arranged in alphabetical order and

telephone director in which the subscriber names are listed in alphabetical order.

There are many sorting techniques out of which we study the following.

1. Bubble sort

2. Quick sort

3. Selection sort and

4. Heap sort

There are two types of sorting techniques:

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 4

1. Internal sorting

2. External sorting

If all the elements to be sorted are present in the main memory, then such sorting

is called internal sorting on the other hand, if some of the elements to be sorted

are kept on the secondary storage, it is called external sorting. Here we study only

internal sorting techniques.

1. LINEAR SEARCH:

This is the simplest of all searching techniques. In this technique, an ordered or

unordered list will be searched one by one from the beginning until the desired

element is found. If the desired element is found in the list, then the search is

successful otherwise unsuccessful.

Suppose there are “n” elements organized sequentially on a List. The number of

comparisons required to retrieve an element from the list, purely depends on

where the element is stored in the list. If it is the first element, one comparison will

do; if it is second element two comparisons are necessary and so on. On an average

you need [(n+1)/2] comparisons to search an element. If search is not successful,

you would need “n” comparisons.

The time complexity of linear search is O(n).

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 5

Algorithm

Here is a simple C++ program that demonstrates sequential search (also known as
linear search). This search algorithm checks each element in a list (or array) one by
one to find the target value.

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 6

Example 1:

Let us illustrate linear search on the following 9 elements:

Searching different elements is as follows:

1. Searching for x = 7, Search successful, data found at 3rd position.

2. Searching for x = 82, Search successful, data found at 7th position.

3. Searching for x = 42, Search un-successful, data not found.

Example 2: Let us take an example of an array A[7]={5,2,1,6,3,7,8}. Array A has 7

items. Let us assume we are looking for 7 in the array. Targeted item=7.

Here, we have

A[7]={5,2,1,6,3,7,8}

X=7

At first, When i=0 (A[0]=5; X=7) not matched

i++ now, i=1 (A[1]=2; X=7) not matched

i++ now, i=2 (A[2])=1; X=7) not matched

…

….

i++ when, i=5 (A[5]=7; X=7) Match Found

Hence, Element X=7 found at index 5.

Index 0 1 2 3 4 5 6

Element 5 2 1 6 3 7 8

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 7

❖ A RECURSIVE PROGRAM FOR LINEAR SEARCH

Here is a recursive C++ program to perform linear (sequential) search:

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 8

❖ EXPLANATION:

1. Base Case:

o If the index reaches or exceeds the size of the array, it means the target is not
present, and -1 is returned.

2. Recursive Case:

o If the current element (arr[index]) matches the target, return the index.

o Otherwise, recursively call the function with index + 1 to check the next

element.
3. Main Function:

o The user inputs a target value to search in the array. The recursive function is
called with the initial index set to 0.

❖ EXAMPLE EXECUTION:

If the array is {10, 20, 30, 40, 50} and the user searches for 30:

• The function will check elements at indices 0, 1, and 2, and then return 2 as the result.

2. BINARY SEARCH

Binary Search is used with sorted array or list. In binary search, we follow the

following steps:

1. We start by comparing the element to be searched with the element in the

middle of the list/array.

2. If we get a match, we return the index of the middle element.

3. If we do not get a match, we check whether the element to be searched is

less or greater than in value than the middle element.

4. If the element/number to be searched is greater in value than the middle

number, then we pick the elements on the right side of the middle

element(as the list/array is sorted, hence on the right, we will have all the

numbers greater than the middle number), and start again from the step 1.

5. If the element/number to be searched is lesser in value than the middle

number, then we pick the elements on the left side of the middle element,

 and start again from the step 1.

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 9

Binary Search is useful when there are large number of elements in an array and

they are sorted. So a necessary condition for Binary search to work is that the

list/array should be sorted.

❖ FEATURES OF BINARY SEARCH

1. It is great to search through large sorted arrays.

2. It has a time complexity of O(log n) which is a very good time complexity. It

has a simple implementation.

Binary search is a fast search algorithm with run-time complexity of Ï(log n). This

search algorithm works on the principle of divide and conquers. For this algorithm

to work properly, the data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the

collection. If a match occurs, then the index of item is returned. If the middle item

is greater than the item, then the item is searched in the sub-array to the left of the

middle item. Otherwise, the item is searched for in the sub-array to the right of the

middle item. This process continues on the sub- array as well until the size of the

sub array reduces to zero.

❖ HOW BINARY SEARCH WORKS?

For a binary search to work, it is mandatory for the target array to be sorted. We

shall learn the process of binary search with a pictorial example. The following is

our sorted array and let us assume that we need to search the location of value 31

using binary search.

First, we shall determine half of the array by using this formula –

mid = low + (high - low) / 2

 Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 10

Now we compare the value stored at location 4, with the value being searched, i.e.

31. We find that the value at location 4 is 27, which is not a match. As the value is

greater than 27 and we have a sorted array, so we also know that the target value

must be in the upper portion of the array.

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target

value 31.

The value stored at location 7 is not a match, rather it is more than what we are

looking for. So, the value must be in the lower part from this location.

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 11

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is

a match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of

comparisons to be made to very less numbers.

❖ EXAMPLE 1:

Let us illustrate binary search on the following 12 elements:

If we are searching for x = 4: (This needs 3 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8

low = 1, high = 2, mid = 3/2 = 1, check 4, found

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 12

If we are searching for x = 7: (This needs 4 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8

low = 1, high = 2, mid = 3/2 = 1, check 4

low = 2, high = 2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8

low = 4, high = 5, mid = 9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8

low = 4, high = 5, mid = 9/2 = 4, check 9

low = 5, high = 5, mid = 10/2 = 5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)

low = 1, high = 12, mid = 13/2 = 6, check 20, found

❖ AN ITERATIVE BINARY SEARCH PROGRAM

Here is a C++ program for binary search. Binary search is a more efficient search

algorithm compared to linear search, but it requires the array to be sorted.

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 13

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 14

❖ RECURSIVE BINARY SEARCH:

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (1)

Second Stage

P a g e | 15

❖ EXPLANATION:

1. Binary Search (Iterative and Recursive):

o Works by dividing the search space into halves.

o Continually compares the middle element to the target.

o Eliminates half the search space in each step.

o Stops when the target is found or the search space becomes empty.

2. Main Differences:

o Iterative: Uses a loop to perform the search.

o Recursive: Calls itself with updated bounds (left and right).

3. Input Requirement:

o The array must be sorted for binary search to work.

	1. Linear or sequential search
	1. Internal sorting
	1. Linear Search:
	Algorithm
	Example 1:
	❖ A Recursive program for linear search
	❖ Explanation:
	❖ Example Execution:
	2. BINARY SEARCH
	❖ Features of Binary Search
	❖ How Binary Search Works?
	❖ Example 1:
	If we are searching for x = 4: (This needs 3 comparisons)
	If we are searching for x = 7: (This needs 4 comparisons)
	If we are searching for x = 8: (This needs 2 comparisons)
	If we are searching for x = 9: (This needs 3 comparisons)
	If we are searching for x = 16: (This needs 4 comparisons)
	If we are searching for x = 20: (This needs 1 comparison)
	❖ An Iterative Binary Search Program
	❖ Recursive Binary Search:

