
                                           

P a g e  | 1 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

  

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security 

Subject:  

Object Oriented Programming (OOP)    

Class:  

Second 

Lecturer:   

Dr. Abdulkadhem A. Abdulkadhem 

 

Lecture: (2) 

Functions and Parameter 

Transmission 



                                           

P a g e  | 2 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

1. Introduction to Functions 

What is a Function? 

A function is a block of code designed to perform a specific task, reusable 

throughout a program. C++ allows flexible function definitions and parameter 

handling. 

Parameter Transmission in Functions: 

In C++, parameters can be passed in multiple ways: 

- Pass by Value: A copy of the argument is passed. 

 A copy of the variable is passed to the function. 

 Any changes inside the function do not affect the original variable. 

#include <iostream> 

using namespace std; 

 

void squareByValue(int n) { 

    n = n * n;                           // modifies only the copy 

    cout << "Inside function (by value): " << n << endl; 

} 

 

int main() { 

    int x = 5; 

    squareByValue(x); 

    cout << "Outside function: " << x << endl; 

    return 0; 

} 

Expected Output: 

Inside function (by value): 25 

Outside function: 5 

✅ The original x remains unchanged. 

- Pass by Reference: The actual argument is passed, allowing the function to 

modify the argument. 

 The actual variable (its memory address) is passed to the function. 

 Any changes inside the function directly affect the original variable. 



                                           

P a g e  | 3 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

#include <iostream> 

using namespace std; 

 

void squareByReference(int &n) { 

    n = n * n;                             // modifies the original variable 

    cout << "Inside function (by reference): " << n << endl; 

} 

 

int main() { 

    int x = 5; 

    squareByReference(x); 

    cout << "Outside function: " << x << endl; 

    return 0; 

} 

Expected Output: 

Inside function (by reference): 25 

Outside function: 25 

✅ The original x is modified. 

Benefits: Saves memory (no copy is made) and allows modification of the 

caller's variables. 

2. Function Overloading 

Definition: Function overloading allows multiple functions to have the same 

name with different signatures (i.e., different parameter types or numbers of 

parameters). 

Benefits: Provides better code readability and reusability. 

Example Code:  

#include <iostream> 
using namespace std; 
// Function to calculate the area of a rectangle 
int area(int length, int width) { 
    return length * width; 
} 
// Overloaded function to calculate the area of a circle 
double area(double radius) { 
    return 3.1415 * radius * radius; 
} 



                                           

P a g e  | 4 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

 
int main() { 
    int length = 5, width = 10; 
    double radius = 7.5; 
 
    cout << "Area of rectangle: " << area(length, width) << endl; 
    cout << "Area of circle: " << area(radius) << endl; 
 
    return 0; 
} 
Explanation: 

The 'area' function is overloaded: one version takes two 'int' parameters, and 

the other takes a 'double' parameter. The correct function is selected based on 

the argument type. 

3. Inline Functions 

Definition: Inline functions are expanded in line where they are called, which 

can reduce function call overhead, especially for small functions. 

When to Use: Inline functions should be used for small, frequently called 

functions. 

Example Code: 

#include <iostream> 
using namespace std; 
// Inline function to add two numbers 
inline int add(int a, int b) { 
    return a + b; 
} 
 
int main() { 
    int x = 10, y = 20; 
    cout << "Sum: " << add(x, y) << endl; 
 
    return 0; 
} 



                                           

P a g e  | 5 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

Explanation: 

The 'add' function is declared as 'inline'. When called, the compiler replaces 

the function call with the function's code, which can improve performance for 

small functions. 

4. Default Arguments 

Definition: Default arguments allow function parameters to have default 

values if no arguments are passed during the function call. 

Advantages: Simplifies function calls and improves code readability. 

Example Code: 

#include <iostream> 
using namespace std; 
// Function to print a message with a default argument 
void greet(string name = "Guest") { 
    cout << "Hello, " << name << "!" << endl; 
} 
 
int main() { 
    greet();            // Uses default argument 
    greet("Alice");     // Passes 'Alice' as argument 
 
    return 0; 
} 
Explanation: 

The 'greet' function has a default argument 'Guest'. If no argument is passed, 

the default value is used. Otherwise, the provided argument overrides the 

default value. 

5. Return by Reference 

Definition: Returning by reference allows a function to return a reference to a 

variable rather than a copy, enabling the caller to modify the returned 

variable directly. 



                                           

P a g e  | 6 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

When to Use: Used when you want the function to return a variable that can 

be modified by the caller. 

 

Example Code: 

#include <iostream> 
using namespace std; 
// Function that returns a reference to a variable 
int& getLargest(int &a, int &b) { 
    return (a > b) ? a : b; 
} 
 
int main() { 
    int x = 5, y = 10; 
    cout << "Before modification: x = " << x << ", y = " << y << endl; 
 
    getLargest(x, y) = 100;  // Modifying the largest number by reference 
    cout << "After modification: x = " << x << ", y = " << y << endl; 
 
    return 0; 
} 
Explanation: 

The 'getLargest' function returns a reference to the largest of two integers. In 

'main', the returned reference is used to directly modify the largest variable. 

Summary 

1. Function Overloading allows multiple functions with the same name but 

different parameters. 

2. Inline Functions can reduce the overhead of small function calls by 

expanding them inline. 

3. Default Arguments provide default values for function parameters. 

4. Pass by Reference allows a function to modify the caller's arguments 

directly, saving memory and time. 

5. Return by Reference enables a function to return a reference to a 

variable, allowing modifications outside the function. 



                                           

P a g e  | 7 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

 

Homework Assignment 

Instructions: 

 Complete each task as specified. 

 Write clean, well-commented C++ code for each task. 

 Ensure that your code compiles and runs correctly. 

 Due Date: 1 week. 

 Submit your homework to the google form 

[https://forms.gle/7M6B1iRqjNbQsVdV6]. 

Task 1: Function Overloading 

Write an overloaded function named calculate to perform the following 

operations: 

 For two integer inputs: Return the sum of the two numbers. 

 For two floating-point inputs: Return the product of the two numbers. 

 For three integer inputs: Return the largest of the three numbers. 

cout << calculate(5, 10);       // Output: 15 (integer sum) 
cout << calculate(2.5, 4.0);    // Output: 10.0 (floating-point product) 
cout << calculate(3, 7, 2);     // Output: 7 (largest of three integers) 

 

Task 2: Default Arguments 

Write a function named printMessage that takes two parameters: message (a 

string) and times (an integer). The function should print the message the 

specified number of times. If no times argument is provided, the default value 

should be 3. 

Example: 

printMessage("Hello!");         // Prints "Hello!" 3 times 
printMessage("Hi!", 5);         // Prints "Hi!" 5 times 
 



                                           

P a g e  | 8 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

Task 3: MCQ questions 

Q1. Which of the following best describes function overloading in C++? 

a) Having multiple functions with the same name and identical parameter list. 

b) Defining multiple functions with the same name but different parameter lists. 

c) Declaring the same function in different files. 

d) Allowing a function to return multiple values. 

e) Using default arguments in a function. 

Q2. Consider the following code: 

#include <iostream> 

using namespace std; 

inline int multiply(int a, int b) { 

    return a * b; 

} 

int main() { 

    int x = 3, y = 4; 

    cout << multiply(x, y); 

} 

What is the main purpose of declaring multiply as inline? 

a) It prevents the function from being called multiple times. 

b) It forces the compiler to generate a new copy of the function each time. 

c) It eliminates function call overhead by expanding the function code directly at the call site.  

d) It makes the function automatically overloaded. 

e) It allows the function to accept reference parameters. 

Q3. Which of the following function definitions correctly demonstrates the use of a default 

argument? 

a)  void show(int x, int y); 

b) void show(int x = 10, int y = 20);  

c) void show(int x; int y = 20); 

d) int show(int x, int y = "Guest"); 

e) int show(int x, int y = default); 

Q4. What will be the output of the following code? 

#include <iostream> 

using namespace std; 

void greet(string name = "Guest") { 

    cout << "Hello, " << name << "!" << endl; 

} 

int main() { 



                                           

P a g e  | 9 

Department of Cyber Security 

Object Oriented Programming – Lecture (2)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

    greet(); 

    greet("Alice"); 

} 

a) Hello, Guest! 

    Hello, Alice!  

b) Hello, ! 

    Hello, Alice! 

c) Hello, Guest! 

    Hello, Guest! 

d) Compile-time error 

e) Runtime error 

Q5. In the following code, what happens when swap(x, y) is executed? 

void swap(int &a, int &b) { 

    int temp = a; 

    a = b; 

    b = temp; 

} 

int main() { 

    int x = 5, y = 10; 

    swap(x, y); 

    cout << x << " " << y; 

} 

a) Output: 5 10 

b) Output: 10 5 

c) Output: 0 0 

d) Output: x y 

e) Compile-time error 

Q6. Consider the following code: 

int& getLargest(int &a, int &b) { 

    return (a > b) ? a : b; 

} 

int main() { 

    int x = 8, y = 12; 

    getLargest(x, y) = 50; 

    cout << x << " " << y; 

} 

What will be the output? 

a) 8 12 

b) 8 50  

c) 50 12 

d) 50 50 

e) Compile-time error 


