DEPARTMENT OF CYBER SECURITY
SUBJECT:
OBJECT ORIENTED PROGRAMMING (OOP)
CLASS:
SECOND
LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE: (2)

FUNCTIONS AND PARAMETER
TRANSMISSION

Department of Cyber Security Lecturer Name

2%
) 393100

Object Oriented Programming — Lecture (2)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

1. Introduction to Functions
What is a Function?

A function is a ISERIOHGOUCIICSIENEONONDCHONMNNSDOCINGREASE, rcusable

throughout a program. C++ allows flexible function definitions and parameter
handling.

Parameter Transmission in Functions:

In C++, parameters can be passed in multiple ways:

- BASSIBYIVEIR: A copy of the argument is passed.

o A copy of the variable is passed to the function.
e Any changes inside the function do not affect the original variable.

#include <iostream>
using namespace std;

void squareByValue (int n) {
n = n * nj; // modifies only the copy
cout << "Inside function (by value): " << n << endl;

}

int main () {
int x = 5;
squareByValue (x) ;
cout << "Outside function: " << x << endl;
return 0;

}

Expected Output:

Inside function (by value): 25
Outside function: 5

"1 The original x remains unchanged.

- _: The actual argument is passed, allowing the function to
modify the argument.

e The actual variable (its memory address) is passed to the function.
e Any changes inside the function directly affect the original variable.

Page |2

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (2)

“‘\\‘Q_RSWY
2%
) 393100

&

¥ second Stage Dr. Abdulkadhem A. Abdulkadhem
o>

#include <iostream>
using namespace std;

void squareByReference (int In) {
n=n* n; // modifies the original variable
cout << "Inside function (by reference): " << n << endl;

}

int main () {
int x = 5;
squareByReference (x) ;
cout << "Outside function: " << x << endl;
return 0;

Expected Output:

Inside function (by reference): 25
Outside function: 25

"1 The original x is modified.

-: Saves memory (no copy is made) and allows modification of the
caller's variables.

2. Function Overloading

Definition: Function overloading allows multiple functions to have the same
name with different signatures (i.e., different parameter types or numbers of
parameters).

Benefits: Provides better code readability and reusability.

Example Code:

#include <iostream>
using namespace std;
// Function to calculate the area of a rectangle
int area(int length, int width) {

return length * width;
}
// Overloaded function to calculate the area of a circle
double area(double radius) {

return 3.1415 * radius * radius;

}

Page |3

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

int main() {
int length = 5, width = 10;
double radius = 7.5;

cout << "Area of rectangle: " << area(length, width) << end];
cout << "Area of circle: " << area(radius) << end];

return O;

}

Explanation:

The 'area’ function is overloaded: one version takes two 'int' parameters, and
the other takes a 'double’ parameter. The correct function is selected based on
the argument type.

3. Inline Functions
Definition: Inline functions are expanded in line where they are called, which
can reduce function call overhead, especially for small functions.

When to Use: Inline functions should be used for small, frequently called
functions.

Example Code:

#include <iostream>
using namespace std;
// Inline function to add two numbers
inline int add(int a, int b) {
return a + b;

}

int main() {
intx =10,y = 20;
cout << "Sum: " << add(x, y) << end];

return O;

}

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

Explanation:

The 'add’ function is declared as 'inline'. When called, the compiler replaces
the function call with the function's code, which can improve performance for
small functions.

4. Default Arguments
Definition: Default arguments allow function parameters to have default
values if no arguments are passed during the function call.

Advantages: Simplifies function calls and improves code readability.

Example Code:

#include <iostream>
using namespace std;
// Function to print a message with a default argument
void greet(string name = "Guest") {
cout << "Hello, " << name << "!" << end];
}

int main() {
greet(); // Uses default argument
greet("Alice"); // Passes 'Alice' as argument

return 0;

}

Explanation:
The 'greet’ function has a default argument 'Guest'. If no argument is passed,
the default value is used. Otherwise, the provided argument overrides the

default value.

5. Return by Reference

Definition: Returning by reference allows a function to return a reference to a
variable rather than a copy, enabling the caller to modify the returned

variable directly.

Page |5

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

When to Use: Used when you want the function to return a variable that can
be modified by the caller.

Example Code:

#include <iostream>
using namespace std;
// Function that returns a reference to a variable
int& getLargest(int &a, int &b) {
return (a>Db) ?a:b;

}

int main() {
intx=5,y=10;
cout << "Before modification: x =" <<x << ",y =" <<y <<end];

getLargest(x, y) = 100; // Modifying the largest number by reference
cout << "After modification: x =" <<x << ", y="<<y << end];

return O;

}

Explanation:
The 'getLargest’ function returns a reference to the largest of two integers. In
'main’, the returned reference is used to directly modify the largest variable.

Summary

1. Function Overloading allows multiple functions with the same name but
different parameters.
. Inline Functions can reduce the overhead of small function calls by

expanding them inline.

. Default Arguments provide default values for function parameters.

. Pass by Reference allows a function to modify the caller's arguments
directly, saving memory and time.

. Return by Reference enables a function to return a reference to a
variable, allowing modifications outside the function.

Page |6

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Homework Assignment

Instructions:

Complete each task as specified.

Write clean, well-commented C++ code for each task.
Ensure that your code compiles and runs correctly.
Due Date: 1 week.

Submit your homework to the google form
[https://forms.gle/7M6B1iRqjNbQsVdV6].
Task 1: Function Overloading

Write an overloaded function named calculate to perform the following
operations:

e For two integer inputs: Return the sum of the two numbers.
e For two floating-point inputs: Return the product of the two numbers.
e For three integer inputs: Return the largest of the three numbers.

cout << calculate(5,10); // Output: 15 (integer sum)
cout << calculate(2.5, 4.0); // Output: 10.0 (floating-point product)
cout << calculate(3, 7, 2); // Output: 7 (largest of three integers)

Task 2: Default Arguments

Write a function named printMessage that takes two parameters: message (a
string) and times (an integer). The function should print the message the
specified number of times. If no times argument is provided, the default value
should be 3.

Example:

printMessage("Hello!"); // Prints "Hello!" 3 times
printMessage("Hi!", 5); // Prints "Hi!" 5 times

Page |7

Department of Cyber Security Lecturer Name

90 39371103

Object Oriented Programming — Lecture (2)

5\0“?’ Second Stage Dr. Abdulkadhem A. Abdulkadhem
o>

Task 3: MCQ questions

Q1. Which of the following best describes function overloading in C++?

a) Having multiple functions with the same name and identical parameter list.
b) Defining multiple functions with the same name but different parameter lists.
c) Declaring the same function in different files.

d) Allowing a function to return multiple values.

e) Using default arguments in a function.

Q2. Consider the following code:

#include <iostream>

using namespace std;

inline int multiply(int a, int b) {
return a * b;

}

int main () {
int x = 3, yv = 4;
cout << multiply(x, Vy);

}

What is the main purpose of declaring muitiply as inline?

a) It prevents the function from being called multiple times.

b) It forces the compiler to generate a new copy of the function each time.

c) It eliminates function call overhead by expanding the function code directly at the call site.
d) It makes the function automatically overloaded.

e) It allows the function to accept reference parameters.

Q3. Which of the following function definitions correctly demonstrates the use of a default
argument?
a) void show(int x, int y);

b)void show (int x = 10, int y = 20);

C)void show (int x; int y = 20);
d)int show (int x, int y = "Guest");
e)int show (int x, int y = default);

Q4. What will be the output of the following code?

#include <iostream>
using namespace std;
void greet (string name = "Guest") {
cout << "Hello, " << name << "!" << endl;
}

int main () {

Page | 8

Department of Cyber Security Lecturer Name

90 39371103

Object Oriented Programming — Lecture (2)

5‘0\‘%’ Second Stage Dr. Abdulkadhem A. Abdulkadhem
o>

greet () ;
greet ("Alice") ;
}

a) Hello, Guest!
Hello, Alice!

b) Hello, !
Hello, Alice!

c) Hello, Guest!
Hello, Guest!

d) Compile-time error

e) Runtime error

Q5. In the following code, what happens when swap (x, y) is executed?

void swap (int &a, int &b) {
int temp = a;
a = b;
b = temp;
}
int main () {
int x = 5, y = 10;
swap (x, y);
cout << x << " " K< y;

}

a) Output: 5 10
b) Output: 10 5
c) Output: 0 o
d) Output: x v
e) Compile-time error

Q6. Consider the following code:

int& getlLargest (int &a, int &b)
return (a > b) ? a : b;

}

int main () {
int x = 8, yv = 12;
getLargest (x, y) = 50;
cout << x << " " K y;

}

What will be the output?
a) 812

b) 8 50

c) 5012

d) 50 50

e) Compile-time error

Page |9

