



جامعة المستقبل  
AL MUSTAQBAL UNIVERSITY



قسم الأمان السيبراني  
DEPARTMENT OF CYBER SECURITY

**SUBJECT: COMPUTATION THEORY**

**CLASS: 3rd**

**LECTURER: MSc :MUNTATHER AL-MUSSAWEE**

**LECTURE: (2)**  
**REGULAR EXPRESSION**

**Regular languages** are formal languages that can be expressed using regular expressions.

**Regular languages** can be generated from one-element languages by applying certain standard operations a finite number of times. These simple operations include (**concatenation, union, and Kleen closure**).

**Regular expressions** can be thought of as the algebraic description of a regular language. Regular expression can be defined by the following rules:

1. Every letter of the alphabet  $\Sigma$  is a regular expression.  $L = \{a, b\}$
2. Null string  $\Lambda$  and empty set  $\emptyset$  are regular expressions.
3. If  $r_1$  and  $r_2$  are regular expressions then
  - (i)  $r_1, r_2$
  - (ii)  $r_1r_2$  ( concatenation of  $r_1r_2$  )
  - (iii)  $r_1 + r_2$  ( union of  $r_1$  and  $r_2$  )
  - (iv)  $r_1^*$ ,  $r_2^*$  ( kleen closure of  $r_1$  and  $r_2$  ) are also regular expressions
4. If a string can be derived from the rules 1, 2 and 3 then it is also a regular expression.

**Note** that  $a^*$  means zero or more occurrence of **a** in the string while  $a^+$  means that one or more occurrence of a in the string. That means  $a^*$  denotes language  $L = \{\Lambda, a, aa, aaa, \dots\}$  and  $a^+$  represents language  $L = \{a, aa, aaa, \dots\}$ . And also note that there can be more than one regular expression for a given set of strings.

**Example:**

Write the language for each of the following regular expressions,

$\Sigma = \{a, b\}$ .

1-  $(ab)^* = \{\Lambda, ab, abab, ababab, \dots\}$

2-  $ab^*a = \{aa, aba, abba, abbba, \dots\}$

3-  $a^*b^* = \{\Lambda, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, \dots\}$

**Notice** that ba and aba are not in this language. Also we should be very careful to observe that  $a^*b^* \neq (ab)^*$

**Example:** Write a regular expression for the language containing odd number of 1s,  $\Sigma = \{0, 1\}$ .

The language will contain at least one 1. It may contain any number of 0s anywhere in the string. So the language we have to write a regular expression for is 1, 01, 01101, 0111, 111, .... This language can be represented by the following regular expression:

$0^*(10^*10^*)^*10^*$

**Example:**

Write the language for each of the following regular expressions,  
 $\Sigma = \{x\}$ .

1-  $L1 = \{x^{\text{odd}}\} = x(xx)^* \text{ or } (xx)^*x = \{x, xxx, xxxxx, \dots\}$

2-  $L2 = \{x^{\text{even}}\} = (xx)^* \text{ or } = \{\Lambda, xx, xxxx, \dots\}$

$L3 = \{x^{\text{even}>0}\} = (xx)^*xx \text{ or } xx(xx)^* = \{xx.xxxx.xxxxxx.\dots\}$

**Examples:**

1- Consider the language  $L_3$  defined over the alphabet  $\Sigma = \{a, b, c\}$ . All the words in  $L_3$  begin with an a or c and then are followed by some number of b's. We may write this as:

$$(a + c)b^*$$

2- Consider a finite language  $L_4$  that contains all the strings of a's and b's of length exactly three.

$$L_4 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$$

So we may write:

$$(a + b)(a + b)(a + b) \text{ or } (a + b)^3$$

In general, if we want to refer to the set of all possible strings of a's and b's of any length, we could write:

$$(a + b)^*$$

3- Construct RE for all words that begin with the letter **a** :

$$a(a + b)^*$$

4- All words that begin with an **a** and end with **b** can be defined by the expression:

$$a(a + b)^*b$$

5- The language of all words that have at **least two a's** can be described by the expression:

$$(a + b)^*a(a + b)^*a(a + b)^*$$

6- The language of all words that have **at least one a** and **at least one b**:

$$(a + b)^*a(a + b)^*b(a + b)^* \text{ or } bb^*aa^*$$

7- The words of the form some **b's** followed by some **a's**. These exceptions are all defined by the regular expression:

$$bb^*aa^* \equiv b^+a^+$$

**Example:** Write a regular expression for the language

$$L = \{ab^n w: n \geq 3, w \in (a + b)^+\}$$

The strings in the language begins with a followed by three bs and followed by either w, w will contain at least one a or b. The strings are like abba, abbbb.

$$ab^3(a+b)^+$$

**Homework:**

1- Find a regular expression over the alphabet {a, b}: