| 1 .o .. I .o u.
AL MUSTAQBAL UNIVERSITY

Ag—1 elld IS

2" class
2024- 2025

Numerical Analysis
Practical

MATLAB

Lecture 1

Asst. Lect. Mohammed Jabbar
Mohammed.Jabbar.Obaid@uomus.edu.iq

Al Ayl -deagiall chluzaly)
(es g aaad) Julail) Bala
Dlila
oY) B palaall

Cybersecurity Department
(o) (YY) i

Mohammed.Jabbar.Obaid@uomus.edu.iq

Contents

1 Introduction to MATLAB for Numerical Computations
1.1 Matlab Programming
1.2 Understanding the MATLAB Environment

1.2.1 MATLAB Desktop Components

2 Basic Syntax
2.1 HandsonPractice,
2.2 Variables. e
2.2.1 Creating Variables
222 Variable Types e
223 Clearing Variables

2.2.4 Checking Variable Information

3 Matrices and Vectors
3.1 Creating Vectors. o v v v it e e e e e e
3.1.1 linspace function
3.1.2 ColonOperator
3.2 Creating Matrices« v v v v vt e e e

3.3 Matrix Functions L.

Functions Applied on Matrices

Indexing of Matrix Values

M- Files and Syntax

6.1 M-Files
6.1.1 Creatinga MATLAB Script

6.2 Functions e

Control Structures

7.1 Conditional Statements

13

15

16
16
17
17

17

9

7.1.1 Theif Statement 18

7.1.2 Theif-else Statement 18
7.1.3 The if-elseif-else Statement 18
T2 LOOPS .« v v o i e e e e e e e e e e e e e e 19
72.1 TheforLoop 19
722 ThewhileLoop 19
7.3 Break and Continue Statements 20
7.3.1 break Statement.o 20
7.3.2 continue Statementl 20
Plotting and Visualization 21
8.1 BasicPlotting 21
8.1.1 Simple2D LinePlot 21
8.1.2 Multiple Lines on the Same Plot 22
8.1.3 Subplots 22
Homework 24
9.1 HomeworkofBasicSyntax 24
9.2 Homework of Matrices and Vectors 24
9.3 Homework of Indexing of Matrix Values 24
9.4 Homework of M- Filesand Syntax 25
9.5 Homework of Control Structures 25
9.6 Homework of Plotting and Visualization 25

1 INTRODUCTION TO MATLAB FOR NUMERICAL COMPUTATIONS 1

1 Introduction to MATLAB for Numerical Computations

MATLAB (short for MATrix LABoratory) is a high-level programming environment
widely used for numerical computations, data analysis, algorithm development, and vi-
sualization. It is especially powerful for working with matrices and arrays, making it

ideal for scientific and engineering applications.

1.1 Matlab Programming

A computer program is a sequence of instructions in a given language that achieves a
specific task.

MATLAB programming is centered around matrix and array manipulations, offering
an extensive collection of built-in functions and toolboxes for numerical computation,

algorithm development, data analysis, and visualization.

1.2 Understanding the MATLAB Environment

MATLAB development IDE can be launched from the icon created on the desktop. Un-
derstanding the MATLAB environment is essential for efficiently using its features. Be-

low are the key components of the MATLAB environment.

4\ MATLAB R2023b > =]} X

P ECTEI=ToL | R - .|
= S Il [/ & Variablev » L& Analyze Code =] © Preferences % Community

= ([58 O Qrndres 02 WY S & & N e

New New New Open ([Compae Import Clean o SoveWorkspace g ppg & Run and Time Simulink Layout =2 58Pt aqq.ons el < Reduest Support

Script Live Script ¥ v Data Data [Z Clear Workspace ¥ v (42 Clear Commands ¥ v |l parallel v v vl Learn MATLAB

FILE VARIABLE CoDE SIMULINK ENVIRONMENT RESOURCES
<P EA » C:» Users » v R

Current Folder

Name

Public

Details
Workspace

Name Value

Ex
=539 2

Figure 1: The main working widow in Matlab

MOHAMMED JABBAR

1 INTRODUCTION TO MATLAB FOR NUMERICAL COMPUTATIONS 2

1.2.1 MATLAB Desktop Components

@\ MATLAB R2023b = o X
HOME PLOTS APPS s BED @E@ ®I>ea ch Documentation b
= - 1, variable v » [Analyze Code 2 E (@ Preferences PANELS
=5 s 57 U3 [JendFiles & WY e J -
& — Command Window Ctl+0
New New New Open ([compare Import Clean - oaveWorkspace o qppg & Runand Time Simulink | Layout L3 SetPathl g]
Script Live Script ¥ - Data Data (27 Clear Workspace ¥ v % Clear Commands ¥ v i Parallel v Command History Ctrl+1
FILE VARIABLE CODE SIMULINK ENVIRONMENT Current Folder Ctrl+2
G EE | C b Users > M
2 - Workspace Cul+3 -
Current Folder
Name Next Visible Panel Ctil+Tab
& Public Previous Visible Panel Ctrl+Shift+Tab
::] user X =
Next Tabbed Panel Ctrl+Page Down
1 Previous Tabbed Panel Ctrl+Page Up
>> y=2
y =
2
fx>> y=2
Details ~
Workspace O]
Name Value
Hx 1
Hy 2

I.

Figure 2: MATLAB Desktop Components: Switch Window

Command Window:

* The Command Window is where you can type and execute MATLAB com-
mands interactively. For example, entering a calculation like 3+4 will im-

mediately show the result.
* You can also run scripts and functions from the Command Window by typing

their names.

Command Window ®

>> x=1

Figure 3: Command Window

MOHAMMED JABBAR

1 INTRODUCTION TO MATLAB FOR NUMERICAL COMPUTATIONS 3

2. Workspace:

» The Workspace shows all the variables currently in memory. You can view

their values and details like size and type.

* You can double-click a variable in the Workspace to open the Variable Editor

and inspect or modify its contents.

Workspace (x

Name Value

Ex 1
Ey 2

Figure 4: Workspace

3. Command History: This window stores all the commands you have previously
entered in the Command Window. You can easily re-execute commands from here

by double-clicking them.

Command History ® x
3x prime number
Prime = primes (512*512)
= prime number
sqrt (23000)
Prime = primes (300*300)
sqrt (8713)
Prime = primes (100001)
sgrt (9592)
Prime = primes (200000)
sqrt (17984) l
Prime = primes (300000)
sgrt (25997)
Prime = primes (400000)
sgrt (33860)
Prime = primes (500000)
sgrt (14538)

Figure 5: Command History

MOHAMMED JABBAR

2 BASIC SYNTAX 4

4. Current Folder: The Current Folder window displays the files and folders in
your working directory. This is the default location where MATLAB will save or

look for scripts, functions, and data files.

Current Folder ()
Name

Public

user

Details A

Figure 6: Current Folder

2 Basic Syntax

MATLAB has a simple and intuitive syntax designed for numerical computing and ma-
trix manipulations. Here’s an overview of the basic syntax rules and commands to get

started with MATLAB.

2.1 Hands on Practice

Type a valid expression, for example,

9+5

% And press ENTER. When you click the Execute button, or type Ctrl+E, MATLAB ...

executes it immediately and the result returned is:

ans =

10

MOHAMMED JABBAR

2 BASIC SYNTAX 5

Let us take up few more examples:

372 %3 raised to the power of 2
%Press ENTER.

ans =

Another example,

sin(pi/2) %sine of angle 90 (7/2)
%Press ENTER.

ans =

Another example,

7/0 %Divide by zero
%Press ENTER.

ans =

Inf % Warning: division by zero

Another example,

732%20.3
%Press ENTER.

ans =

1.4860e+04

MATLAB provides some special expressions for some mathematical symbols, like

™, 00, 1/a etc. Nan stands for 'not a number’.

MOHAMMED JABBAR

2 BASIC SYNTAX

Function | Description Syntax
sin(x) Sine of x sin(z)
cos(x) Cosine of x cos(z)
tan(x) Tangent of x tan(z)
asin(x) Inverse sine (arcsin) of x sin”! (z)
acos(x) Inverse cosine (arccos) of x cos ()
atan(x) Inverse tangent (arctan) of x tan~!(x)
exp(x) Exponential function of x e’

log(x) Natural logarithm of x log(z)
logl0(x) | Base-10 logarithm of x log,,(x)
sqrt(x) Square root of x N
abs(x) Absolute value of x ||
floor(x) | Round towards negative infinity | floor(x)
ceil(x) Round towards positive infinity | ceil(x)
round(x) | Round to nearest integer round(z)
sinh(x) Hyperbolic sine of x sinh(z)
cosh(x) | Hyperbolic cosine of x cosh(z)
tanh(x) Hyperbolic tangent of x tanh ()
asinh(x) | Inverse hyperbolic sine of x sinh™(z)
acosh(x) | Inverse hyperbolic cosine of x | cosh™'(x)
atanh(x) | Inverse hyperbolic tangent of x | tanh™*(2)

Table 1: Table of Special Functions in MATLAB

Operator | Description Example
+ Addition a+b

- Subtraction a—>b

* Multiplication ax*b

/ Right Division 7

+ Element-wise Addition A +B

- Element-wise Subtraction A —-B
K Element-wise Multiplication | A. x B

J Element-wise Right Division | A./B

Table 2: Table of Arithmetic Operators in MATLAB

2.2 Variables

In MATLAB environment, every variable is an array or matrix. You can assign variables

in a simple way.

Variables are used to store data for manipulation and analysis. Here’s a brief overview

of how to create and use variables in MATLAB:

MOHAMMED JABBAR

2 BASIC SYNTAX 7

2.2.1 Creating Variables

You can create variables by simply assigning a value to a name. Variable names must

start with a letter, followed by letters, digits, or underscores.

x = 5 %Numeric variable
%Press ENTER

X =

5

y = sin(67) %Numeric variable

%Press ENTER
y o
—0.8555

name = 'MATLAB' %String variable

%Press ENTER

name =

'MATLAB'

A =11, 2 3; 4, 5, 6] %Matrix variable

%Press ENTER
A=
1 2 3
4 5 6

% Accessing Variables: You can access the value of a variable by simply typing its ...
name.

y

%Press ENTER
y =

—0.8555

MOHAMMED JABBAR

2 BASIC SYNTAX 8

2.2.2 Variable Types

MATLAB supports various data types, including:
e Numeric: Scalars, vectors, and matrices.

 Strings: Character arrays and string arrays.

Logical: Boolean values (true/false).

Cells: Cell arrays for heterogeneous data.

» Structures: Data structures for complex data types.

2.2.3 Clearing Variables

You can remove variables from the workspace using the clear command.

clear x
%Press ENTER

%Removes variable x

clear all

%Press ENTER

%Clears all variables

Remark. The (clc) command in MATLAB is used to clear the Command Window.
It does not delete variables from memory, but it removes all the text and results from the

Command Window, giving you a fresh, clean workspace for the next set of outputs.

2.2.4 Checking Variable Information

Use the (whos) command to see the variables in the workspace along with their sizes and

types.

whos %See all variables

MOHAMMED JABBAR

3 MATRICES AND VECTORS 9

Remark. In MATLAB, the semicolon (;) has two main purposes:

1. Suppress Output: When you use a semicolon at the end of a statement or com-
mand, MATLAB will execute the command but suppress the output in the Com-

mand Window. For example:

x = 5; %The value is assigned, but no output is displayed.

% Without the semicolon:

2. Separate Commands on the Same Line: You can use a semicolon to separate

multiple statements or commands on the same line. For example:

a=3;b="7c¢c=a+ b;

% This executes all three commands in sequence, a, b, and c.

3 Matrices and Vectors

In MATLAB, matrices and vectors are fundamental data structures for numerical com-

puting.

3.1 Creating Vectors

%Row Vector:

R=[1,2, 3, 4, 5]
R =

1 23 45

MOHAMMED JABBAR

3 MATRICES AND VECTORS 10

% Column Vector:

C=11;2; 3; 4; 5]

C =

3.1.1 linspace function

In MATLAB, the linspace function generates a row vector of linearly spaced elements
between two specified limits. It is especially useful for creating vectors when you know
the number of points you want between a start and an end value, rather than specifying

the step size (as you do with the colon operator :).
y = linspace(a, b, n)

* a: Start value.
* b: End value.

* n: Number of points to generate

Default Number of Points (100 points if n is omitted):

y = linspace(a, b)

y = linspace(1,50,5)
y =

1.00 13.25 25.50 37.75 50.00

MOHAMMED JABBAR

3 MATRICES AND VECTORS

11

3.1.2 Colon Operator
Creates a vector from a to b with a step of s

v =as:b
Creates a vector from 1 to 10 with a step of 2

v=1210=13579

3.2 Creating Matrices

%Manually:

A=[1,2, 3; 4, 5, 6; 7, 8, 9

A=
1 2 3
4 5 6
789
% Zero Matrix:

B = zeros(3, 3) %3x3 matrix of zeros

B =
000
0 00
0 00
% Identity Matrix:

E = eye(3) %3x3 identity matrix

E:
I 00
010

MOHAMMED JABBAR

3 MATRICES AND VECTORS

12

%Random Matrix:

R= rand(3, 3); %3x3 matrix of random values between 0 and 1

3.3 Matrix Functions

A=T[1,2, 3; 4, 5, 6; 7, 8, 9]
A=

1 2 3

4 5 6

789
%Determinant:

DA = det(A)

DA =

6.6613e-16

% Inverse :
IA = inv(A)

IA =
—0.4504 0.9007 —0.4504
0.9007 —1.8014 0.9007
—0.4504 0.9007 —0.4504

MOHAMMED JABBAR

4 FUNCTIONS APPLIED ON MATRICES 13

4 Functions Applied on Matrices

1. Sum of Elements

Function:
sum(A) (Sums each column of matrix A)
Example:
A=
1 2 3
456 = sum(A)=12 15 18
78 9
Function:
sum(A,2) (Sums each row of matrix A)
Example:
6
sum(A,2) = 15
24

2. Product of Elements

Function:
prod(A) (Product of elements in each column)
Example:
prod(A) = 28 80 162
Function:

prod(A,2) (Product of elements in each row)

MOHAMMED JABBAR

4 FUNCTIONS APPLIED ON MATRICES 14

Example:
6
prod(A,2) = 120
504
3. Mean
Function:
mean(A) (Mean of each column of matrix A)
Example:
mean(A) = 4 5 6
Function:
mean(A,2) (Mean of each row of matrix A)
Example:
2
mean(A4,2) = 5
8

4. Transpose

Function:
AT (Transpose of matrix A)
Example:
1 4 7
A= 25 8
3 6 9

MOHAMMED JABBAR

5 INDEXING OF MATRIX VALUES 15

5 Indexing of Matrix Values

In MATLAB, indexing is a way to access specific elements of a matrix. MATLAB uses

I-based indexing, meaning that the first element of any array is indexed by 1.

1. Accessing Individual Elements

To access an individual element in a matrix A, use the syntax A(7, j), where ¢ is the row
index and j is the column index.

Example:

1 2 3
A= 4 5 6
7 8 9

A(2,3) =6 (Accessing the element in the 2nd row and 3rd column)

2. Accessing Entire Rows or Columns

To access an entire row, use A(4, :), and to access an entire column, use A(:, 7).

Example:

* Accessing the 2nd row:

* Accessing the 3rd column:

3. Logical Indexing

Logical indexing allows you to access elements based on conditions.

Example: To access elements greater than 5:

MOHAMMED JABBAR

6 M- FILES AND SYNTAX 16

C=AA>5)=

© oo N O

5. Modifying Elements

You can modify elements in a matrix using the same indexing methods.

Example: To set the element in the 1st row and 2nd column to 10:

1 999 3
A1,2)=999 = A= 4 5 ¢

7 8 9

6 M- Files and Syntax

6.1 M- Files

An M-file in MATLAB is a script or function that is saved with the .m extension. M-files
are used to store sequences of commands that can be executed together, making them

essential for automating tasks, performing calculations, and organizing code.

<\ MATLAB R2023b — o X

NS NENCCNON] se2rch Documentation p

EDITOR PUBLISH VIEW

of O &l @compae > T & % %% &7 Profiler [5 S >
New Open Save (= print v GoTo Afind ¥ Refactor L S 20 L Run Bl runandAdvance ¢ g sip
v v - ~ [Bookmark ¥ v Fl~ Section P24 Run to End -
FILE NAVIGATE CODE ANALYZE SECTION RUN =

b C» Users »

W Editor - untitled *

untitleds * +

1 %% Creating a MATLAB Script)
2(] % A MATLAB script is a file containing a sequence of MATLAB commands that are

3 % executed together. Scripts are useful f tomating tasks and performing calculations

4 % without having to enter commands manually in the Command Window. Below is| a guide
5 % on how to create and run a MATLAB script.|

Value
[1234,567...

Command Window
2 Jx>>

6.6613e-16
(13579
‘MATLAB'
[1.234,5]
o

5

2aamn

Figure 7: m- File

MOHAMMED JABBAR

7 CONTROL STRUCTURES 17

6.1.1 Creating a MATLAB Script

a. Open MATLAB: Launch MATLAB and navigate to the Home tab.
b. Create a New Script: Click on the New Script button in the toolbar or go to File >
New > Script. This opens the MATLAB Editor.

¢. Write Your Script: In the editor, write your MATLAB code. For example:

1 x = inspace (1,50,5)
2 if x > 50
3 disp ('Passed the exam');

4 end

6.2 Functions

A function is a separate file that accepts input arguments and returns outputs. Functions

are also saved with a .m extension, but they start with a function keyword.

1 function z=abPlus(x,y);
2 z=x+y+10;
3 end

4+ % abPlus(7,9)=26

7 Control Structures

Control structures in MATLAB are essential for managing the flow of execution in pro-
grams. They allow you to make decisions (conditional statements), repeat tasks (loops),

and control the execution path based on specific conditions.

MOHAMMED JABBAR

7 CONTROL STRUCTURES 18

7.1 Conditional Statements
7.1.1 The if Statement

The if statement allows you to execute a block of code based on a condition.

1 x=15/4;
2 if x> 5
3 disp('x is greater than 5');

4 end

7.1.2 The if-else Statement

The if-else statement allows you to execute one block of code if the condition is true and

another if it is false.

1 x = 65/34;

2 if x> 5

3 disp('x is greater than 5');

4+ else

5 disp('x is not greater than 5');
6 end

7.1.3 The if-elseif-else Statement

The if-elseif-else statement allows multiple conditions to be checked sequentially.

| x = 65/54—65/45;
2 if x>0
3 disp('x is positive');

4 elseif x < 0

MOHAMMED JABBAR

7 CONTROL STRUCTURES

s disp('x is negative');
¢ else

. 1 . . 1
7 disp('x is zero');

s end

7.2 Loops

Loops allow you to repeat a block of code multiple times.

7.2.1 The for Loop

A for loop is used to iterate over a range of values.

1 for i = 1:5

2 disp (['Tteration: ', num2str(i)]);
3 end

4+ % Output.

s % Iteration: 1

6 % Iteration: 2

7 % Iteration: 3

s % Iteration: 4

o % Iteration: 5

7.2.2 The while Loop

A while loop continues to execute as long as a specified condition is true.

ox = 1;

> while x < 5

3 disp (['x: ', num2str(x)]);
4 x =x + 1; % Increment x
s end

MOHAMMED JABBAR

CONTROL STRUCTURES 20

% Output.
% x: 1
% x: 2
% x: 3
% x: 4
% x: b

7.3 Break and Continue Statements

7.3.1 break Statement

Terminates the loop immediately.

IS

break; % Exit the loop when i is 5

end

7.3.2 continue Statement

Skips the rest of the loop iteration and proceeds to the next iteration.

10

for i = 1:10
if mod(i, 2) = 0
continue; % Skip even numbers
end
disp (['Odd i: ', num2str(i)]);
end
% Output.
% Odd i: 1
% Odd i: 3
% Odd i: 5

MOHAMMED JABBAR

8 PLOTTING AND VISUALIZATION 21

n % 0dd i: 7
2 % 0dd i: 9

8 Plotting and Visualization

In MATLAB, plotting and visualization are essential tools for analyzing data and pre-
senting results. MATLAB provides a wide range of functions to create different types

of plots, graphs, and visualizations.

8.1 Basic Plotting
8.1.1 Simple 2D Line Plot

The plot function is used to create 2D line plots.

1 x = 0:0.1:2*xpi; % Generate x values from 0 to 2

2y = sin(x); % Compute the sine of each x value

4 plot(x, y) % Create the plot
s xlabel('x"'); % Label for x—axis
¢ ylabel('sin(x)"'); % Label for y—axis

7 title ('Plot of sin(x)'); % Title of the plot

Plot of sin(x)
T

Figure 8: Plot of sin(x)

MOHAMMED JABBAR

8 PLOTTING AND VISUALIZATION 22

8.1.2 Multiple Lines on the Same Plot

You can plot multiple lines on the same graph by passing multiple sets of data to plot.

1 x = 0:0.1:2%pi;
2yl = sin(x);

3 y2 = cos(x);

s plot(x, yl, '—r', x, y2, '—b'); % Plot both sin(x) and cos(x)
6 xlabel('x");

7 ylabel('y');

s legend ('sin(x)"', 'cos(x)'); % Add a legend

o title('Plot of sin(x) and cos(x)"');

Plot of sin(x) and cos(x)
T T

~ s AN sin(x)
4 " - ——~~ cos(x)

08 NS N\ /

06 / \ \\\

L / , 4
X / \ \ /
/ . \ , i

04— / N \\ /
\

02~ / . \ ,

02 N / /
04 : \
04 / /
N . , Y,
06 - . N /

-08 [~ N P \ p
N . Y,

Figure 9: Plot of sin(x) and cos(x)

8.1.3 Subplots

The subplot function allows you to display multiple plots in the same figure.

1 x = 0:0.1:2%pi;

2yl = sin(x);

MOHAMMED JABBAR

8 PLOTTING AND VISUALIZATION

23

3 y2 = cos(x);

s subplot(2,1,1); % 2 rows, 1 column, first subplot
¢ plot(x, yl);
7 title('sin(x)');

o subplot(2,1,2); % 2 rows, 1 column, second subplot
0 plot(x, y2);

o title ('cos(x)');

sin(x)
1 T T T T
- T~
- ~
05 e .
- ~
p N
,/' ~
1=
\ //
. ,/
05 Y e
~~ ~
1 I I 1 I - . 1
0 1 2 3 4 5 6
cos(x)
1 = T —
- -
///
~ P
0.5~ N e
N ,/
S
L ~)
0 N e
A e
05 7
~ //
1 I I) = I I 1
0 1 2 3 4 5 6

Figure 10: subplot: sin(x) and cos(x)

MOHAMMED JABBAR

9 HOMEWORK 24

9 Homework

9.1 Homework of Basic Syntax

1. Calculate the equations below using command window in Matlab, where x = 13.

y=2r+T2° %3

3
z=1y—0.67z+ -

7
Y
== %213
m 52*
v=V17T—1m

2. sin(76) 4 cos(65)

9.2 Homework of Matrices and Vectors

1. Use linspace to create a vector consist of 7 values within (5 — 49) range.
2. Create two matrices 3 * 3 and combine between them in one matrix.
3. Create a matrix 4 * 4 and implement some operations on created matrix:

* Find the sum and prod values in the matrix.

* Find the mean and Transpose values in the matrix.

9.3 Homework of Indexing of Matrix Values

1. Create matrix 5 x 5 and find the index (3, 2).

2. Create matrix 3 * 3 and find the index (3, :) and (:, 3).

MOHAMMED JABBAR

9 HOMEWORK 25

9.4 Homework of M- Files and Syntax

1. Create function to calculate energy based on the equation £ = mc?, where ¢ =

299792458.

2. Create any function

9.5 Homework of Control Structures

1. Write a script to check if a number is positive, negative, or zero (if Statements).

2. Write a script that keeps asking the user to enter a positive number. The script will

stop when a negative number is entered (while Loop).

9.6 Homework of Plotting and Visualization

1. Create a simple 2D line plot for the function y = z2.

2. Use subplots to display the functions y; = sin(x1), yo = cos(zz) and y3 =

tan(z3).

MOHAMMED JABBAR

	Introduction to MATLAB for Numerical Computations
	Matlab Programming
	Understanding the MATLAB Environment
	MATLAB Desktop Components

	Basic Syntax
	Hands on Practice
	Variables
	Creating Variables
	Variable Types
	Clearing Variables
	Checking Variable Information

	Matrices and Vectors
	Creating Vectors
	linspace function
	Colon Operator

	Creating Matrices
	Matrix Functions

	Functions Applied on Matrices
	Indexing of Matrix Values
	M- Files and Syntax
	M- Files
	Creating a MATLAB Script

	Functions

	Control Structures
	Conditional Statements
	The if Statement
	The if-else Statement
	The if-elseif-else Statement

	Loops
	The for Loop
	The while Loop

	Break and Continue Statements
	break Statement
	continue Statement

	Plotting and Visualization
	Basic Plotting
	Simple 2D Line Plot
	Multiple Lines on the Same Plot
	Subplots

	Homework
	Homework of Basic Syntax
	Homework of Matrices and Vectors
	Homework of Indexing of Matrix Values
	Homework of M- Files and Syntax
	Homework of Control Structures
	Homework of Plotting and Visualization

