| &1 I a -
AL MUSTAQBAL UNIVERSITY

A\ | W ” \
Y P v, p

Department of Cyber Security

Subject: Data Structure
Class: Second

Lecturer: Msc :Muntather AL-mussawee

Lecture: (7)

C++ Pointers

C++ Pointers

Pointers are symbolic representations of addresses. They enable
programs to simulate call-by-reference as well as to create and
manipulate dynamic data structures. Iterating over elements in arrays or
other data structures is one of the main use of pointers.

The address of the variable you're working with is assigned to the pointer

variable that points to the same data type (such as an int or string).

Syntax:
datatype *var_name;
int *ptr; // ptr can point to an address which holds int

data

How Pointer Works in C++

Var
Int var = 10; s 101 20 30
- #2022 ‘l‘ 4
int*ptr = &var; !

*ptr = 20;
int**ptr = &ptr;)
**ptr = 30;

=

How to use a pointer?

o Define a pointer variable

o Assigning the address of a variable to a pointer using the unary
operator (&) which returns the address of that variable.

o Accessing the value stored in the address using unary operator
(*) which returns the value of the variable located at the

address specified by its operand.

The reason we associate data type with a pointer is that it knows how
many bytes the data is stored in. When we increment a pointer, we
increase the pointer by the size of the data type to which it points. To
master the use of pointers and their applications, explore the C++ Course

for comprehensive lessons and hands-on examples.

ptr

» Ox7fffa0757dd4

0x7fff98b49%e8 «4————— Addressof pointer variable ptr

Var

10 «4———— Value of variable var (*ptr)

Ox7ffa0757dd4 «—— Address of variable var (Stored at ptr)

// C++ program to illustrate Pointers

#include <bits/stdc++.h>
using namespace std;
void geeks()

{
int var = 20;
// declare pointer variable
int* ptr;
// note that data type of ptr and var must be same
ptr = &var;
// assign the address of a variable to a pointer
cout << "Value at ptr = " << ptr << "\n";
cout << "Value at var = " << var << "\n";
cout << "Value at *ptr = " << *ptr << "\n";
}

// Driver program
int main()
{

geeks();

return 0;

}

https://gfgcdn.com/tu/T6j/
https://gfgcdn.com/tu/T6j/

Output

Value at ptr = Ox7ffe454c08cc

20

Value at var

Value at *ptr = 20

References and Pointers

There are 3 ways to pass C++ arguments to a function:
« Call-By-Value
« Call-By-Reference with a Pointer Argument
« Call-By-Reference with a Reference Argument

// C++ program to illustrate call-by-methods

#include <bits/stdc++.h>
using namespace std;

// Pass-by-Value
int squarel(int n)

{
// Address of n in squarel() is not the same as nl in
// main()
cout << "address of nl in squarel(): " << &n << "\n";
// clone modified inside the function
n *= n;
return n;

}

// Pass-by-Reference with Pointer Arguments
void square2(int* n)

{
// Address of n in square2() is the same as n2 in main()
cout << "address of n2 in square2(): " << n << "\n";
// Explicit de-referencing to get the value pointed-to
*n *— *n;

}

// Pass-by-Reference with Reference Arguments
void square3(int& n)

{
// Address of n in square3() is the same as n3 in main()
cout << "address of n3 in square3(): " << &n << "\n";
// Implicit de-referencing (without '*')
n *= n;
}

void geeks()

// Call-by-Value

int nl = 8;

cout << "address of nl in main(): << &nl << "\n";
cout << "Square of nl: " << squarel(nl) << "\n";
cout << "No change in nl: " << nl1 << "\n";

// Call-by-Reference with Pointer Arguments

int n2 = 8;
cout << "address of n2 in main(): " << &n2 << "\n";
square2(&n2);

cout << "Square of n2:
cout << "Change reflected in n2:

<< n2 << "\n";
" << n2 << "\n";

// Call-by-Reference with Reference Arguments

int n3 = 8;

cout << "address of n3 in main(): " << &n3 << "\n";
square3(n3);

cout << "Square of n3: " << n3 << "\n";

cout << "Change reflected in n3: << n3 << "\n";

}

// Driver program
int main() { geeks(); }

Output
address of nl in main(): @x7fffa7e2de64

address of nl in squarel(): Ox7fffa7e2de4c
Square of nl: 64

No change in nl: 8

address of n2 in main(): @x7fffa7e2de68
address of n2 in square2(): Ox7fffa7e2de68
Square of n2: 64

Change reflected in n2: 64

address of n3 in main(): @x7fffa7e2de6bc¢
address of n3 in square3(): Ox7fffa7e2deb6c¢
Square of n3: 64

Change reflected in n3: 64

	How to use a pointer?
	References and Pointers

