Computation Theory

R I & I
AL MUSTAQBAL UNIVERSITY

;I;::;.n II c nﬂl P F73 | 9"
DEPARTMENT OF CYBER SECURITY

OO

SUBJECT: COMPUTATION THEORY
CLASS: 3rd

LECTURER: MSC MUNTATHER AL-MUSSAWEE

LECTURE: (9)
ToP — DOWN/ BOTTOM — UP PARSING

—

50

C—'

Computation Theory

fecture Seven

Top — Down/ Bottom — Up Parsing

There are two type of derivation:

1- Top — down: In this type of derivation, the string will derive from start symbol
to leaves such as:

Example: S— ()|(S)|SS
Is the string “(()()())” accept or not?

S —(S)
— (SS)
— (SSS)
— (()SS)
— (()()S)
— (()()() Accept

2- Bottom — Up: In this type of derivation, the string will derive from leaves to
start symbol. There are many type of methods to derive one of these called
shift — reduce.

Shift — Reduce

Shift Reduce parser attempts for the construction of parse in a similar manner as
done in bottom up parsing i.e. the parse tree is constructed from leaves (bottom)
to the root (up). This parser requires some data structures such as, an input buffer
for storing the input string and a stack for storing and accessing the production
rules.

Basic Operations

Shift: This involves moving of symbols from input buffer onto the stack.

Reduce: If the handle appears on top of the stack then, replace one element from
the left side of derivation grammar with one or more elements from the
right side.

—

51

C—'

Computation Theory Amal Abdulbaqi Maryoosh

Accept: If only start symbol is present in the stack and the input buffer is empty
then, the parsing action is called accept. When accept action is obtained,
it is means successful parsing is done.

Error: This is the situation in which the parser can neither perform shift action

nor reduce action and not even accept action.

(shift) o Wi 6 e 1 iy 6

Example: E—E+E|E-E|E+*E|E/E|(E)|-E|id
Is the string “a + b * ¢ accept or not?

id +1id * id
Stack Input Buffer Parsing Action
$ id +id * id$ Shift
$id +1d * id$ Reduce E — id
$E +1d * id$ Shift
$E + id * id$ Shift
$E +id * 1d$ Reduce E — id
$E+E * 1d$ Reduce E—-E+E
$E * 1d$ Shift
$SEx id$ Shift
$E * id $ Reduce E — id
$E x E $ Reduce E— E * E
$E $ Accept

—

52

C—'

Computation Theory

Amal Abdulbaqi Maryoosh

Example: 1et G be the grammar below:

S — aAcBe
A— Ab|b
B—d
Is the string “abbcde” accept or not?

Stack Input Buffer
$ abbcde$
$a bbcde$
$ab bede$
$aA bede$
$aAb cde$
$aA cde$
$aAc de$
$aAcd e$
$aAcB e$
$aAcBe $

$S $

—

Parsing Action

53

Shift

Shift

Reduce A— b
Shift

Reduce A — Ab
Shift

Shift

Reduce B—d
Shift

Reduce s — aAcBe
Accept

C—'

Computation Theory Amal Abdulbaqi Maryoosh

Example: Consider the following grammar:
S—(L)|a
L—-L,S|S

Parse the input string “(a, (a,a))” using a shift-reduce parser.

Stack Input Buffer Parsing Action
$ (a,(a,a))$ Shift

$(a,(a,a))$ Shift

$(a ,(a,a))$ Reduce S — a
$(S ,(a,a))$ Reduce L — S
$(L (a,a))$ Shift

$(L, (a,a))$ Shift

$(L,(a,a))$ Shift

$(L,(a ,a))$ Reduce S — a
$(L,(S ,a))$ Reduce L — S
$(L.(L ,a))$ Shift

$(L,(L, a))$ Shift
$(L,(L,a))$ Reduce S — a
$(L,(L,S))$ ReduceL > L, S
$(L,(L))$ Shift

$(L,(L)) $ Reduce S — (L)
$(L,S) $ Reduce L > L, S
$(L) $ Shift

$(L) $ Reduce S — (L)
$S $ Accept

—

54

C—'

Computation Theory Amal Abdulbaqi Maryoosh

Homework:

1- Let G be the grammar below:
E—EoE|-E|(E)|id
0—-|+[x*][/
Is the string “A + B *(C — D/K)” accept or not?
2- Let G be the grammar below:
E—E+E|E-E|E*E|E/E|ETE|(E)|-E|id
Is the string “id Tid T (id + id/(id — id)” accept or not?

—

55

C—'

