
Computation Theory

50

مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ــــــــــس ــق
Department of Cyber Security

Subject: Computation Theory

Class: 3rd

Lecturer: Msc :Muntather AL-mussawee

Lecture: (9)

Top – Down/ Bottom – Up Parsing

Computation Theory

51

Lecture Seven

Top – Down/ Bottom – Up Parsing

There are two type of derivation:

1- Top – down: In this type of derivation, the string will derive from start symbol

to leaves such as:

Example: S ⟶ () | (S) | SS

Is the string “(()()())” accept or not?

S ⟶ (S)

⟶ (SS)

⟶ (SSS)

⟶ (()SS)

⟶ (()()S)

⟶ (()()()) Accept

2- Bottom – Up: In this type of derivation, the string will derive from leaves to

start symbol. There are many type of methods to derive one of these called

shift – reduce.

Shift – Reduce

Shift Reduce parser attempts for the construction of parse in a similar manner as

done in bottom up parsing i.e. the parse tree is constructed from leaves (bottom)

to the root (up). This parser requires some data structures such as, an input buffer

for storing the input string and a stack for storing and accessing the production

rules.

Basic Operations

Shift: This involves moving of symbols from input buffer onto the stack.

Reduce: If the handle appears on top of the stack then, replace one element from

the left side of derivation grammar with one or more elements from the

right side.

Computation Theory Amal Abdulbaqi Maryoosh

52

Accept: If only start symbol is present in the stack and the input buffer is empty

then, the parsing action is called accept. When accept action is obtained,

it is means successful parsing is done.

Error: This is the situation in which the parser can neither perform shift action

nor reduce action and not even accept action.

 هي بتنفيذها نقوم عملية اول دائما .(shift)

Example: E ⟶ E + E | E – E | E ∗ E | E/E | (E) | -E | id

Is the string “a + b ∗ c” accept or not?

id + id ∗ id

Stack Input Buffer Parsing Action

$ id + id ∗ id$ Shift

$id + id ∗ id$ Reduce E ⟶ id

$E + id ∗ id$ Shift

$E + id ∗ id$ Shift

$E + id ∗ id$ Reduce E ⟶ id

$E + E ∗ id$ Reduce E ⟶ E + E

$E ∗ id$ Shift

$E∗ id$ Shift

$E ∗ id $ Reduce E ⟶ id

$E ∗ E $ Reduce E ⟶ E ∗ E

$E $ Accept

Computation Theory Amal Abdulbaqi Maryoosh

53

Example: Let G be the grammar below:

S ⟶ aAcBe

A ⟶ Ab | b

B ⟶ d

Is the string “abbcde” accept or not?

Stack Input Buffer Parsing Action

$ abbcde$ Shift

$a bbcde$ Shift

$ab bcde$ Reduce A ⟶ b

$aA bcde$ Shift

$aAb cde$ Reduce A ⟶ Ab

$aA cde$ Shift

$aAc de$ Shift

$aAcd e$ Reduce B ⟶ d

$aAcB e$ Shift

$aAcBe $ Reduce s ⟶ aAcBe

$S $ Accept

Computation Theory Amal Abdulbaqi Maryoosh

54

Example: Consider the following grammar:

S → (L) | a

L → L , S | S

Parse the input string “(a , (a , a))” using a shift-reduce parser.

Stack Input Buffer Parsing Action

$ (a , (a , a)) $ Shift

$ (a , (a , a)) $ Shift

$ (a , (a , a)) $ Reduce S → a

$ (S , (a , a)) $ Reduce L → S

$ (L , (a , a)) $ Shift

$ (L , (a , a)) $ Shift

$ (L , (a , a)) $ Shift

$ (L , (a , a)) $ Reduce S → a

$ (L , (S , a)) $ Reduce L → S

$ (L , (L , a)) $ Shift

$ (L , (L , a)) $ Shift

$ (L , (L , a)) $ Reduce S → a

$ (L , (L , S)) $ Reduce L → L , S

$ (L , (L)) $ Shift

$ (L , (L)) $ Reduce S → (L)

$ (L , S) $ Reduce L → L , S

$ (L) $ Shift

$ (L) $ Reduce S → (L)

$ S $ Accept

Computation Theory Amal Abdulbaqi Maryoosh

55

Homework:

1- Let G be the grammar below:

E ⟶ E o E | -E | (E) | id

o ⟶ - | + | ∗ | /

Is the string “A + B ∗(C – D/K)” accept or not?

2- Let G be the grammar below:

E ⟶ E + E | E – E | E ∗ E | E/E | E↑E | (E) | -E | id

Is the string “id ↑ id ↑ (id + id/(id – id)” accept or not?

