
                                           

P a g e  | 1 

Department of Cyber Security 

Object Oriented Programming – Lecture (7)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

  

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security 

Subject:  

Object Oriented Programming (OOP)    

Class:  

Second 

Lecturer:   

Dr. Abdulkadhem A. Abdulkadhem 

 

Lecture: (7) 

Scope Operator Resolution, Member Initialization List, 

Constant Members and Static Members 

 

 



                                           

P a g e  | 2 

Department of Cyber Security 

Object Oriented Programming – Lecture (7)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

 

1. Scope Operator Resolution (::) 

The scope resolution operator :: in C++ is used to define or access a global variable when there 

is a local variable with the same name or to access members of a class. 

Example: 

#include <iostream> 

using namespace std; 

 

int var = 100;        // متغير عبم عبلمي 

 

class MyClass { 

public: 

    int var;            // متغير خبص ببلكبئن 

 

    MyClass(int value) { 

        var = value;          // تهيئة المتغير الخبص ببلكبئن 

    } 

 

    void display() { 

      int var = 10;                    // متغير محلي داخل الذالة 

      cout << "Local var: " << var << endl;    // يطبع المتغير المحلي 

      cout << "Object's var: " << MyClass::var << endl; // يطبع متغير الكبئن الحبلي 

      cout << "Global var: " << ::var << endl;          // يطبع المتغير العبم 

    } 

}; 

 

int main() { 

    MyClass obj(20);   //  02إنشبء كبئن وتهيئة المتغير الخبص به إلى  

    obj.display(); 

 

    return 0; 

} 

2. Member Initialization List 

In C++, a member initialization list allows initializing class members directly before the 

constructor's body. This is particularly useful for const members and references. 

Example: 

#include <iostream> 

using namespace std; 

 

class Student { 

private: 

    const int id;   // const member 

    string name; 

 



                                           

P a g e  | 3 

Department of Cyber Security 

Object Oriented Programming – Lecture (7)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

public: 

    // Member Initialization List 

    Student(int id, string name) : id(id), name(name) { 

        // Constructor body can be empty for initialization 

    } 

 

    void display() { 

        cout << "ID: " << id << ", Name: " << name << endl; 

    } 

}; 

 

int main() { 

    Student student1(101, "Alice"); 

    student1.display(); 

    return 0; 

} 

Explanation: 

 The id member is const and can only be initialized in a member initialization list. 

Without this syntax, initializing const or reference members would result in a 

compilation error. 

3. Constant Members 

Constant members in C++ are members that cannot be modified once they are initialized. This 

concept extends to function arguments and member functions. 

 Constant Function Argument: Declares an argument as const to prevent it from being 

modified inside the function. 

 Constant Member Function: Declares a member function as const, ensuring it does not 

modify any class members. 

Example: 

#include <iostream> 

using namespace std; 

 

class Rectangle { 

private: 

    int width, height; 

public: 

    Rectangle(int w, int h) : width(w), height(h) {} 

 

    // Constant member function 

    int area() const { 

        // width++; // This line would cause a compilation error 

        return width * height; 

    } 

 

    // Function with const argument 

    void display(const string &prefix) const { 



                                           

P a g e  | 4 

Department of Cyber Security 

Object Oriented Programming – Lecture (7)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

        cout << prefix << " Area: " << area() << endl; 

    } 

}; 

 

int main() { 

    Rectangle rect(5, 3); 

    rect.display("Rectangle"); 

    return 0; 

} 

 

Explanation: 

 area() is a constant member function, meaning it cannot modify the class members 

width and height. 

 display() takes a constant string reference as an argument, which prevents modification 

of the input string. 

4. Static Members 

Static members belong to the class rather than any particular object. They retain their values 

across all instances of the class, and there is only one copy of each static member. 

Example: 

#include <iostream> 

using namespace std; 

 

class Counter { 

public: 

    static int count=0; // Static member variable 

 

    Counter() { 

        count++; 

    } 

 

    static void showCount() { 

        cout << "Count: " << count << endl; 

    } 

}; 

 

// Initialize static member 

int Counter::count = 0; 

 

int main() { 

    Counter c1, c2, c3; 

    Counter::showCount(); // Accessing static member function 

    return 0; 

} 

 

Explanation: 



                                           

P a g e  | 5 

Department of Cyber Security 

Object Oriented Programming – Lecture (7)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

 count is a static member variable shared among all objects of Counter. 

 Each time a Counter object is created, count is incremented. 

 The showCount() function is a static member function that can access only static 

members and can be called without an object instance. 

Summary 

In this lecture, we covered advanced C++ concepts that are critical for efficient and organized 

code development: 

1. Scope Operator Resolution: Used to access specific variables within scopes. 

2. Member Initialization List: Allows efficient and necessary initialization of class 

members, particularly const and references. 

3. Constant Members: Ensures data immutability (ثبات) within certain contexts, including 

const arguments and const functions. 

4. Static Members: Allows shared variables and functions that are independent of 

individual objects. 

These concepts are fundamental for writing clean, maintainable C++ code in both simple and 

complex applications. 

 

 

Questions about the lecture 

1. Which operator is used in C++ to access a global variable when a local variable with the 

same name exists? 

2. What is the output of the following code snippet? 

int var = 100; 

class Test { 

public: 

    int var; 

    Test(int v) { var = v; } 

    void show() { 

        int var = 10; 

        cout << ::var; 

    } 

}; 

int main() { 

    Test obj(50); 

    obj.show(); 

    return 0; 

} 

 



                                           

P a g e  | 6 

Department of Cyber Security 

Object Oriented Programming – Lecture (7)                                                       

Second Stage 

 

Lecturer Name 

Dr. Abdulkadhem A. Abdulkadhem 

3. In C++, a member initialization list is mainly required when initializing which of the 

following? 

4. Which of the following correctly defines a constructor using a member initialization list? 

A. Student(int id, string name) { id = id; name = name; } 

B. Student(int id, string name): id(id), name(name) {} 

C. Student(int id, string name); id = id; name = name; 

D. Student::Student(int id, string name) { id=id; name=name; } 

E. Student(id, name): (id, name) {} 

5. Which statement is true regarding constant member functions in C++? 

A. They can modify all class members. 

B. They cannot be called on constant objects. 

C. They cannot modify any non-static data members. 

D. They cannot be declared inside a class. 

E. They can only return void. 

6. What will happen if a constant member variable is initialized inside the constructor body 

instead of using a member initialization list? 

7. In the following code, what is the output? 

class Counter { 

public: 

    static int count; 

    Counter() { count++; } 

}; 

int Counter::count = 0; 

int main() { 

    Counter c1, c2; 

    cout << Counter::count; 

} 

8. Which of the following statements about static member functions is TRUE? 

A. They can access both static and non-static members directly. 

B. They cannot be called using the class name. 

C. They belong to a specific object. 

D. They can be called without creating an object. 

E. They must always return int. 

9. Why should static members be defined outside the class? 

 


