J L S T an all a o AIA.
AL MUSTAQBAL UNIVERSITY

DEPARTMENT OF CYBER SECURITY
SUBJECT:
OBJECT ORIENTED PROGRAMMING (OOP)
CLASS:
SECOND
LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE: (7)

Scope Operator Resolution, Member Initialization List,
Constant Members and Static Members




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (7)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

1. Scope Operator Resolution (::)

The scope resolution operator : : in C++ is used to define or access a global variable when there
is a local variable with the same name or to access members of a class.

Example:

#include <iostream>
using namespace std;

int var = 100; // U._A_ILQ PL&: P kW

class MyClass {
public:
int var; /] 0SS gl ks

MyClass (int value) {

var = value; /] 0SSO e ladl kbl Lhg s
}

void display () {
int var = 10; [/ A By ez
cout << "Local var: " << var << endl; /) el xSl gaday
cout << "Object's var: " << MyClass::var << endl; // suon esion i s
cout << "Global var: " << ::var << endl; [/ aladl jaiiall ey

main () {
MyClass obj (20) ; /7 20 1 4u el jardaldl gy (SLS s Laos|
obj.display () ;

return O;

2. Member Initialization List

In C++, a member initialization list allows initializing class members directly before the
constructor's body. This is particularly useful for eenst members and references.

Example:

#include <iostream>
using namespace std;

class Student {

private:
const int id; // const member
string name;

Page |2




Department of Cyber Security
Lecturer Name
Object Oriented Programming — Lecture (7)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

\\‘\\“_RSWY
2%
) 393100

§$‘
K

&
(s

public:
// Member Initialization List
Student (int id, string name) : id(id), name (name) {
// Constructor body can be empty for initialization

}

void display() {
cout << "ID: " << id << ", Name: " << name << endl;

}

main () {

Student studentl (101, "Alice");
studentl.display () ;

return 0;

Explanation:

e The id member is const and can only be initialized in a member initialization list.

Without this syntax, initializing const or reference members would result in a
compilation error.

3. Constant Members

Constant members in C++ are members that cannot be modified once they are initialized. This
concept extends to function arguments and member functions.

Constant Function Argument: Declares an argument as const to prevent it from being
modified inside the function.

Constant Member Function: Declares a member function as const, ensuring it does not
modify any class members.

Example:

#include <iostream>
using namespace std;

class Rectangle ({
private:
int width, height;
public:
Rectangle (int w, int h) : width(w), height (h) {}

// Constant member function

int area() const {
// width++; // This line would cause a compilation error
return width * height;

}

// Function with const argument
void display(const string &prefix) const {

Page |3




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (7)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

cout << prefix << " Area: " << area() << endl;

int main () {
Rectangle rect (5, 3);
rect.display ("Rectangle") ;
return 0;

Explanation:

area () IS a constant member function, meaning it cannot modify the class members
width and height.

display () takes a constant string reference as an argument, which prevents modification
of the input string.

4. Static Members

Static members belong to the class rather than any particular object. They retain their values
across all instances of the class, and there is only one copy of each static member.

Example:

#include <iostream>
using namespace std;

class Counter ({
public:
static int count=0; // Static member variable

Counter () {
count++;

}

static void showCount () {
cout << "Count: " << count << endl;
}
}i

// Initialize static member
int Counter::count = 0;

int main () {
Counter cl, c2, c3;
Counter: :showCount (); // Accessing static member function
return 0;

Explanation:

Page |4




Department of Cyber Security
Lecturer Name
Object Oriented Programming — Lecture (7)

)
) 393100

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

count IS a static member variable shared among all objects of counter.
Each time a counter oObject is created, count is incremented.

The showcount () function is a static member function that can access only static
members and can be called without an object instance.

Summary

In this lecture, we covered advanced C++ concepts that are critical for efficient and organized
code development:

1. Scope Operator Resolution: Used to access specific variables within scopes.

2. Member Initialization List: Allows efficient and necessary initialization of class
members, particularly const and references.
Constant Members: Ensures data immutability (<) within certain contexts, including
const arguments and const functions.
Static Members: Allows shared variables and functions that are independent of
individual objects.

These concepts are fundamental for writing clean, maintainable C++ code in both simple and
complex applications.

Questions about the lecture

1. Which operator is used in C++ to access a global variable when a local variable with the
same name exists?

2. What is the output of the following code snippet?

int var = 100;
class Test {
public:
int wvar;
Test (int v) var = v; }
void show ()
int var 10g
cout << ::var;
}
I
int main () {
Test obj (50) ;
obj.show () ;
return 0;




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (7)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

3. In C++, a member initialization list is mainly required when initializing which of the
following?

4. Which of the following correctly defines a constructor using a member initialization list?

/\.Student(int id, string name) { id = id; name = name; }
B.Student(int id, string name): id(id), name (name) {}

C. student (int id, string name); id = id; name = name;
D.Student::Student(int id, string name) { id=id; name=name; }
E.Student(id, name) : (id, name) {}

5. Which statement is true regarding constant member functions in C++?

A. They can modify all class members.

B. They cannot be called on constant objects.

C. They cannot modify any non-static data members.

D. They cannot be declared inside a class.

E. They can only return void.

6. What will happen if a constant member variable is initialized inside the constructor body
instead of using a member initialization list?

7. In the following code, what is the output?

class Counter {
public:
static int count;
Counter () { count++; }
b
int Counter::count = 0;
int main() {
Counter cl, c2;
cout << Counter::count;

8. Which of the following statements about static member functions is TRUE?

A. They can access both static and non-static members directly.

B. They cannot be called using the class name.

C. They belong to a specific object.

D. They can be called without creating an object.

E. They must always return int.

9. Why should static members be defined outside the class?




