

جامعة المستقبل
AL MUSTAQLAL UNIVERSITY

قسم الأمانة السيبرانية

DEPARTMENT OF CYBER SECURITY

SUBJECT: COMPUTATION THEORY

CLASS: 3rd

LECTURER: MSc :MUNTATHER AL-MUSSAWEE

LECTURE: (1)
INTRODUCTION TO COMPUTATION THEORY

Computation Theory

Lecture One Introduction

Computation: is simply a sequence of steps that performed by computer.

Computation Theory: is the branch that deals with how efficiently problems can be solved on a model of computation, using an algorithm. This field is divided into three major branches:

1- Automata theory: Automata Theory deals with definitions and properties of different types of “computation models”. Examples of such models are:

- Finite Automata: These are used in text processing, compilers, and hardware design.
- Context-Free Grammars: These are used to define programming languages and in Artificial Intelligence.
- Turing Machines: These form a simple abstract model of a “real” computer, such as your PC at home.

2- Computability theory: Computability theory deals primarily with the question of the extent to which a problem is solvable on a computer. In other words, classify problems as being solvable or unsolvable.

3- Complexity theory: Complexity theory considers not only whether a problem can be solved at all on a computer, but also how efficiently the problem can be solved. Two major aspects are considered:

- Time complexity: and how many steps does it take to perform a computation.
- Space complexity: how much memory is required to perform that computation.

Some Applications of Computation Theory:

1. Design and Analysis of Algorithms.
2. Computational Complexity.
3. Logic in Computer Science.
4. Compiler.

5. Cryptography.
6. Randomness in Computation.
7. Quantum Computation

Sets

A set is a collection of “objects” called the elements or members of the set.

Common forms of describing sets are:

- List all elements, e.g. $\{a, b, c, d\}$.
- Form new sets by combining sets through operators.

Examples in Sets Representation:

- $C = \{ a, b, c, d, e, f \}$ finite set
- $S = \{ 2, 4, 6, 8, \dots \}$ infinite set
- $S = \{ j : j > 0, \text{ and } j = 2k \text{ for } k > 0 \}$
- $S = \{ j : j \text{ is nonnegative and even} \}$

Terminology and Notation:

- To indicate that x is a member of set S , we write $x \in S$.
- To denote the empty set (the set with no members) as $\{\}$ or \emptyset .
- If every element of set A is also an element in set B , we say that A is a subset of B , and write $A \subseteq B$ or $B \supseteq A$.
- If A is not a part of B , if at least one of the elements of A does not belong to B then we say that A is not a subset of B , and write $A \not\subseteq B$ or $B \not\supseteq A$.

Basic Operations on Sets:

- **Complement:** \bar{A} or \bar{A} or A^c
 $\bar{A} = \{ x : x \notin A, x \in U \}$
Contain all elements in universal set which are not in A .
- **Union:** consist of all elements in either A or B
 $A \cup B = \{ x : x \in A \text{ or } x \in B \}$
- **Intersection:** consist of all elements in both A or B $A \cap B = \{ x : x \in A \text{ and } x \in B \}$

- **Difference (/):** consist of all elements in A but not in B $A / B = \{ x : x \in A \text{ but } x \notin B \}$

Properties of Sets:

Let A, B, and C be subsets of the universal set U.

- **Distributive properties**

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- **Idempotent properties**

$$A \cap A = A. A \cup A = A.$$

- **Double Complement property**

$$(A^\sim)^\sim = A.$$

- **De Morgan's laws**

$$(A \cup B)^\sim = A^\sim \cap B^\sim$$

$$(A \cap B)^\sim = A^\sim \cup B^\sim$$

- **Commutative properties**

$$A \cap B = B \cap A.$$

$$A \cup B = B \cup A.$$

- **Associative laws**

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

- **Identity properties**

$$A \cup \emptyset = A$$

$$A \cap U = A$$

- **Complement properties**

$$A \cup A^\sim = U$$

$$A \cap A^\sim = \emptyset$$

Language

Symbols: Symbols are an entity or individual objects, which can be any letter, alphabet, or any picture.

Example:

1, a, b, #

Alphabets: Alphabets are a finite set of symbols. It is denoted by Σ .

Examples:

$\Sigma = \{a, b\}$

$\Sigma = \{A, B, C, D\}$

$\Sigma = \{0, 1, 2\}$

$\Sigma = \{\#, \beta, \Delta\}$

String: It is a finite collection of symbols from the alphabet. The string is denoted by w .

Example:

If $\Sigma = \{a, b\}$, various string that can be generated from Σ are {ab, aa, aaa, bb, bbb, ba, aba,.... }.

 A string with no symbols is known as an *empty string*. It is represented by epsilon (ϵ) or lambda (λ) or null (Λ).

 The number of symbols in a string w is called the *length of a string*. It is denoted by $|w|$.

Example: w

= 010

$|w| = 3$

$|00100| = 5$

$|ab| = 2$

$|\Lambda| = 0$

Language: A language is a set of strings of terminal symbols derivable from alphabet. A language which is formed over Σ can be Finite or Infinite.

Example:

a) $L1 = \{\text{Set of string of length 2}\}$
= {aa, bb, ba, bb} **Finite Language**

b) $L2 = \{\text{Set of all strings starts with 'a'}\}$
= {a, aa, aaa, abb, abbb, ababb, ...} **Infinite Language**

Types of Languages:

1-Natural Languages: They are languages that spoken by humans e.g.: English, Arabic and France. It has alphabet: $\Sigma = \{a, b, c, \dots, z\}$. from these alphabetic we make sentences that belong to the language.

2-Programming Language: (e.g.: c++, Pascal) it has alphabetic: $\Sigma = \{a, b, c, z, A, B, C, \dots, Z, ?, /, -, \backslash\}$. From these alphabetic we make sentences that belong to programming language.

Example:

Alphabetic: $\Sigma = \{0, 1\}$.

Sentences: 0000001, 1010101

Example:

Alphabetic: $\Sigma = \{a, b\}$.

Sentences: ababaabb, bababbabb

Example:

Let $\Sigma = \{x\}$ be set of alphabet of one letter x. we can write this in form:

$L_1 = \{x, xx, xxx, \dots\}$ or write
this in an alternate form: $L_1 =$
 $\{x^n \text{ for } n = 1, 2, 3, \dots\}$

Let $a = xxx$ and $b =xxxxx$
Then $ab = xxxxxxxx = x^8$
 $ba = xxxxxxxx = x^8$

Example:

$L_2 = \{ x, xxx, xxxxx, \dots \}$
= $\{ x^{\text{odd}} \}$
= $\{ x^{2n+1} \text{ for } n = 0, 1, 2, 3, \dots \}$

PALINDROME

Let us define a new language called **PALINDROME** over the alphabet
 $\Sigma = \{a, b\}$

$\text{PALINDROME} = \{ \Lambda, \text{ and all strings } x \text{ such that } \text{reverse}(x) = x \}$ If
we begin listing the elements in PALINDROME we find:

$\text{PALINDROME} = \{ \Lambda, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, \dots \}$

Kleene Closuer

They are two repetition marks, also called Closuer or Kleene Star.

* : Repeat (0 – n) times.

+ : Repeat (1 – n) times.

Example:

If $\Sigma = \{x\}$, then

$\Sigma^* = L_3 = \{ \Lambda, x, xx, xxx, \dots \}$
 $\Sigma^+ = L_3 = \{ x, xx, xxx, \dots \}$

Example:

If $\Sigma = \{0, 1\}$, then

$$\Sigma^* = L_4 = \{\lambda, 0, 1, 001, 11010, \dots\}$$

$$\Sigma^+ = L_4 = \{0, 01, 110, 101, \dots\}$$

Example:

If $\Sigma = \{aa, b\}$, then

$$\Sigma^* = L_5 = \{\lambda, aab, baa, baab, aabb, \dots\}$$

$$\Sigma^+ = L_5 = \{aaaa, b, baaaa, bb, \dots\}$$

☞ في هذه اللغة الكلمة (ab) غير مقبولة لأن (aa) هو حرف واحد ولا يجوز تجزئته.

Example:

If $\Sigma = \{\}$, then

$$\Sigma^* = L_4 = \{\lambda\}$$

$$\Sigma^+ = L_4 = \emptyset \text{ or } \{\}$$