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Lecture One Introduction 
 

Computation: is simply a sequence of steps that performed by computer. 

Computation Theory: is the branch that deals with how efficiently problems can 

be solved on a model of computation, using an algorithm. This field is divided 

into three major branches: 

1- Automata theory: Automata Theory deals with definitions and properties of 

different types of “computation models”. Examples of such models are: 

• Finite Automata: These are used in text processing, compilers, and 

hardware design. 

• Context-Free Grammars: These are used to define programming languages 

and in Artificial Intelligence. 

• Turing Machines: These form a simple abstract model of a “real” computer, 

such as your PC at home. 

 

2- Computability theory: Computability theory deals primarily with the 

question of the extent to which a problem is solvable on a computer. In other 

words, classify problems as being solvable or unsolvable. 

 

3- Complexity theory: Complexity theory considers not only whether a problem 

can be solved at all on a computer, but also how efficiently the problem can 

be solved. Two major aspects are considered: 

• Time complexity: and how many steps does it take to perform a 

computation. 

• Space complexity: how much memory is required to perform that 

computation. 

 

Some Applications of Computation Theory: 

1. Design and Analysis of Algorithms. 

2. Computational Complexity. 

3. Logic in Computer Science. 

4. Compiler. 

https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
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5. Cryptography. 

6. Randomness in Computation. 

7. Quantum Computation 

Sets 

 

A set is a collection of “objects” called the elements or members of the set. 

Common forms of describing sets are: 

- List all elements, e.g. {a, b, c, d}. 

- Form new sets by combining sets through operators. 

 

Examples in Sets Representation: 

- C = { a, b, c, d, e, f } finite set 

- S = { 2, 4, 6, 8, …} infinite set 

- S = { j : j > 0, and j = 2k for k > 0 } 

- S = { j : j is nonnegative and even } 

Terminology and Notation: 

- To indicate that x is a member of set S, we write x∈ S. 

- To denote the empty set (the set with no members) as {} or ∅. 

- If every element of set A is also an element in set B, we say that A is a 

subset of B, and write A⊆ B or B⊇A. 

- If A is not a part of B, if at least one of the elements of A does not belong to 

B then we say that A is not a subset of B, and write A⊈ B or B⊉A. 

 

Basic Operations on Sets: 

- Complement: Á or A̅ or Ac 

A̅ = { x:x ∉ A, x ∈ U} 

Contain all elements in universal set which are not in A. 

- Union: consist of all elements in either A or B 

A ∪ B = { x:x ∈ A or x ∈ B} 

- Intersection: consist of all elements in both A or B A ⋂ B = { x:x ∈ A and 

x ∈ B} 
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- Difference (/): consist of all elements in A but not in B A / B = { x:x ∈ A 

but x ∉ B} 

 

Properties of Sets: 

Let A, B, and C be subsets of the universal set U. 

- Distributive properties 

A ⋂ (B ∪ C) = (A ⋂ B) ∪ (A ⋂ C) 

A ∪ (B ⋂ C) = (A ∪ B) ⋂ (A ∪ C) 

- Idempotent properties 

A ⋂ A = A. A ∪ A = A. 

- Double Complement property 

(A~) ~ = A. 

 

- De Morgan’s laws 

A ∪ B) ~ = A ~ ⋂ B ~ 

(A ⋂ B) ~ = A ~ ∪ B ~ 

 

- Commutative properties 

A ⋂ B = B ⋂ A. 

A ∪ B = B ∪ A. 

- Associative laws 

A ⋂ (B ⋂ C) = (A ⋂ B) ⋂ C 

A ∪ (B ∪ C) = (A ∪ B) ∪ C 

- Identity properties 

A ∪ ∅ = A 

A ⋂ U = A 

- Complement properties 

 

A ∪ A~ = U 

A ⋂ A~ = ∅ 
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Language 

Symbols: Symbols are an entity or individual objects, which can be any letter, 

alphabet, or any picture. 

 

 

Example: 

1, a, b, # 

Alphabets: Alphabets are a finite set of symbols. It is denoted by ∑. 

 

Examples: 

∑ = {a, b} 

∑ = {A, B, C, D} 

∑ = {0, 1, 2} 

∑ = {#, β, Δ} 

String: It is a finite collection of symbols from the alphabet. The string is denoted 

by w. 

Example: 

If ∑ = {a, b}, various string that can be generated from ∑ are {ab, aa, aaa, bb, bbb, 

ba, aba, .... }. 

 

 A string with no symbols is known as an empty string. It is represented by 

epsilon (𝜖) or lambda (𝜆) or null (∧). 

 

 The number of symbols in a string w is called the length of a string. It is 

denoted by |w|. 
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Example: w 

= 010 

|w| = 3 

|00100| = 5 

|ab| = 2 

| ∧ | = 0 

 

Language: A language is a set of strings of terminal symbols derivable from 

alphabet. A language which is formed over Σ can be Finite or Infinite. 

Example: 

a) L1 = {Set of string of length 2} 

= {aa, bb, ba, bb} Finite Language 

 

b) L2 = {Set of all strings starts with 'a'} 

= {a, aa, aaa, abb, abbb, ababb, …} Infinite Language 

Types of Languages: 

1- Natural Languages: They are languages that spoken by humans e.g.: English, 

Arabic and France. It has alphabet: ∑={a, b, c, …. z}. from these alphabetic we 

make sentences that belong to the language. 

2- Programming Language: (e.g.: c++, Pascal) it has alphabetic: ∑={a, b, c, z, 

A, B, C, .. , Z , ?, /, -, \}. From these alphabetic we make sentences that belong 

to programming language. 

 

Example: 

Alphabetic: ∑= {0, 1}. 

Sentences: 0000001, 1010101 

 

Example: 

Alphabetic: ∑= {a, b}. 

Sentences: ababaabb, bababbabb 

 

Example: 

Let ∑ = {x} be set of alphabet of one letter x. we can write this in form: 
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L1 = {x, xx, xxx, …} or write 

this in an alternate form: L1 = 

{xn for n = 1, 2, 3, ...} 

 

Let a = xxx and b = xxxxx 

Then ab = xxxxxxxx = x8 

ba = xxxxxxxx = x8 

 

 

Example: 

L2 = { x, xxx, xxxxx, ... } 

= { x odd} 

= { x2n+1 for n = 0, 1, 2, 3, ... } 

 

 

 

PALINDROME 

Let us define a new language called PALINDROME over the alphabet 

∑= {a, b} 

PALINDROME = { ∧, and all strings x such that reverse(x) = x } If 

we begin listing the elements in PALINDROME we find: 

PALINDROME = { ∧, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ... } 

 

Kleene Closuer 

They are two repetition marks, also called Closuer or Kleene Star. 

* : Repeat (0 – n) times. 

+ : Repeat (1 – n) times. 

 

Example: 

If ∑ = {x}, then 

 

∑* = L3 = { ∧, x, xx, xxx, …} 

∑+ = L3 = { x, xx, xxx, …} 
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Example: 

If ∑ = {0, 1}, then 

 

∑* = L4 = { ∧, 0, 11, 001, 11010, …} 

∑+ = L4 = { 0, 01, 110, 101, …} 

 

Example: 

If ∑ = {aa, b}, then 

 

∑* = L5 = { ∧, aab, baa, baab, aabb, …} 

∑+ = L5 = { aaaa, b, baaaa, bb, …} 

   الكلمة  اللغة هذه في  (ab)  لأن  مقبولة غير  (aa) تجزئته  ولايجوز  واحد  حرف هو. 

 

Example: 

If ∑ = { }, then 

 

∑* = L4 = {∧} 

∑+ = L4 = ∅ or { } 
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