
1

مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ــــــــــس ــق
Department of Cyber Security

Subject: Computation Theory

Class: 3rd

Lecturer: Msc :Muntather AL-mussawee

Lecture: (1)

Introduction to Computation Theory

Computation Theory

2

Lecture One Introduction

Computation: is simply a sequence of steps that performed by computer.

Computation Theory: is the branch that deals with how efficiently problems can

be solved on a model of computation, using an algorithm. This field is divided

into three major branches:

1- Automata theory: Automata Theory deals with definitions and properties of

different types of “computation models”. Examples of such models are:

• Finite Automata: These are used in text processing, compilers, and

hardware design.

• Context-Free Grammars: These are used to define programming languages

and in Artificial Intelligence.

• Turing Machines: These form a simple abstract model of a “real” computer,

such as your PC at home.

2- Computability theory: Computability theory deals primarily with the

question of the extent to which a problem is solvable on a computer. In other

words, classify problems as being solvable or unsolvable.

3- Complexity theory: Complexity theory considers not only whether a problem

can be solved at all on a computer, but also how efficiently the problem can

be solved. Two major aspects are considered:

• Time complexity: and how many steps does it take to perform a

computation.

• Space complexity: how much memory is required to perform that

computation.

Some Applications of Computation Theory:

1. Design and Analysis of Algorithms.

2. Computational Complexity.

3. Logic in Computer Science.

4. Compiler.

https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory

Computation Theory

3

5. Cryptography.

6. Randomness in Computation.

7. Quantum Computation

Sets

A set is a collection of “objects” called the elements or members of the set.

Common forms of describing sets are:

- List all elements, e.g. {a, b, c, d}.

- Form new sets by combining sets through operators.

Examples in Sets Representation:

- C = { a, b, c, d, e, f } finite set

- S = { 2, 4, 6, 8, …} infinite set

- S = { j : j > 0, and j = 2k for k > 0 }

- S = { j : j is nonnegative and even }

Terminology and Notation:

- To indicate that x is a member of set S, we write x∈ S.

- To denote the empty set (the set with no members) as {} or ∅.

- If every element of set A is also an element in set B, we say that A is a

subset of B, and write A⊆ B or B⊇A.

- If A is not a part of B, if at least one of the elements of A does not belong to

B then we say that A is not a subset of B, and write A⊈ B or B⊉A.

Basic Operations on Sets:

- Complement: Á or A̅ or Ac

A̅ = { x:x ∉ A, x ∈ U}

Contain all elements in universal set which are not in A.

- Union: consist of all elements in either A or B

A ∪ B = { x:x ∈ A or x ∈ B}

- Intersection: consist of all elements in both A or B A ⋂ B = { x:x ∈ A and

x ∈ B}

Computation Theory

4

- Difference (/): consist of all elements in A but not in B A / B = { x:x ∈ A

but x ∉ B}

Properties of Sets:

Let A, B, and C be subsets of the universal set U.

- Distributive properties

A ⋂ (B ∪ C) = (A ⋂ B) ∪ (A ⋂ C)

A ∪ (B ⋂ C) = (A ∪ B) ⋂ (A ∪ C)

- Idempotent properties

A ⋂ A = A. A ∪ A = A.

- Double Complement property

(A~) ~ = A.

- De Morgan’s laws

A ∪ B) ~ = A ~ ⋂ B ~

(A ⋂ B) ~ = A ~ ∪ B ~

- Commutative properties

A ⋂ B = B ⋂ A.

A ∪ B = B ∪ A.

- Associative laws

A ⋂ (B ⋂ C) = (A ⋂ B) ⋂ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C

- Identity properties

A ∪ ∅ = A

A ⋂ U = A

- Complement properties

A ∪ A~ = U

A ⋂ A~ = ∅

Computation Theory

5

Language

Symbols: Symbols are an entity or individual objects, which can be any letter,

alphabet, or any picture.

Example:

1, a, b, #

Alphabets: Alphabets are a finite set of symbols. It is denoted by ∑.

Examples:

∑ = {a, b}

∑ = {A, B, C, D}

∑ = {0, 1, 2}

∑ = {#, β, Δ}

String: It is a finite collection of symbols from the alphabet. The string is denoted

by w.

Example:

If ∑ = {a, b}, various string that can be generated from ∑ are {ab, aa, aaa, bb, bbb,

ba, aba, }.

 A string with no symbols is known as an empty string. It is represented by

epsilon (𝜖) or lambda (𝜆) or null (∧).

 The number of symbols in a string w is called the length of a string. It is

denoted by |w|.

Computation Theory

6

Example: w

= 010

|w| = 3

|00100| = 5

|ab| = 2

| ∧ | = 0

Language: A language is a set of strings of terminal symbols derivable from

alphabet. A language which is formed over Σ can be Finite or Infinite.

Example:

a) L1 = {Set of string of length 2}

= {aa, bb, ba, bb} Finite Language

b) L2 = {Set of all strings starts with 'a'}

= {a, aa, aaa, abb, abbb, ababb, …} Infinite Language

Types of Languages:

1- Natural Languages: They are languages that spoken by humans e.g.: English,

Arabic and France. It has alphabet: ∑={a, b, c, …. z}. from these alphabetic we

make sentences that belong to the language.

2- Programming Language: (e.g.: c++, Pascal) it has alphabetic: ∑={a, b, c, z,

A, B, C, .. , Z , ?, /, -, \}. From these alphabetic we make sentences that belong

to programming language.

Example:

Alphabetic: ∑= {0, 1}.

Sentences: 0000001, 1010101

Example:

Alphabetic: ∑= {a, b}.

Sentences: ababaabb, bababbabb

Example:

Let ∑ = {x} be set of alphabet of one letter x. we can write this in form:

Computation Theory

7

L1 = {x, xx, xxx, …} or write

this in an alternate form: L1 =

{xn for n = 1, 2, 3, ...}

Let a = xxx and b = xxxxx

Then ab = xxxxxxxx = x8

ba = xxxxxxxx = x8

Example:

L2 = { x, xxx, xxxxx, ... }

= { x odd}

= { x2n+1 for n = 0, 1, 2, 3, ... }

PALINDROME

Let us define a new language called PALINDROME over the alphabet

∑= {a, b}

PALINDROME = { ∧, and all strings x such that reverse(x) = x } If

we begin listing the elements in PALINDROME we find:

PALINDROME = { ∧, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ... }

Kleene Closuer

They are two repetition marks, also called Closuer or Kleene Star.

* : Repeat (0 – n) times.

+ : Repeat (1 – n) times.

Example:

If ∑ = {x}, then

∑* = L3 = { ∧, x, xx, xxx, …}

∑+ = L3 = { x, xx, xxx, …}

Computation Theory

8

Example:

If ∑ = {0, 1}, then

∑* = L4 = { ∧, 0, 11, 001, 11010, …}

∑+ = L4 = { 0, 01, 110, 101, …}

Example:

If ∑ = {aa, b}, then

∑* = L5 = { ∧, aab, baa, baab, aabb, …}

∑+ = L5 = { aaaa, b, baaaa, bb, …}

 الكلمة اللغة هذه في (ab) لأن مقبولة غير (aa) تجزئته ولايجوز واحد حرف هو.

Example:

If ∑ = { }, then

∑* = L4 = {∧}

∑+ = L4 = ∅ or { }

	Lecture One Introduction
	Sets
	Common forms of describing sets are:
	Examples in Sets Representation:
	Terminology and Notation:
	Basic Operations on Sets:
	Properties of Sets:
	- Distributive properties
	- Idempotent properties
	- Double Complement property
	- De Morgan’s laws
	- Commutative properties
	- Associative laws
	- Identity properties
	- Complement properties

	Language
	Example:
	Examples:
	Example:
	Example: w
	Example:
	Types of Languages:
	Example:
	Example:
	Example:
	Example:

	PALINDROME
	Kleene Closuer
	Example:
	Example:
	Example:
	Example:

