DEPARTMENT OF CYBER SECURITY
SUBJECT:
OBJECT ORIENTED PROGRAMMING (OOP)
CLASS:
SECOND
LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE: (5)

Constructors and Destructors

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (5)

2%
) 393100

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

1. Introduction to Constructors

A constructor is a special member function that is automatically called when an object is
created. Its primary purpose is to initialize objects of a class. The constructor has the same name
as the class and does not have a return type.

Types of Constructors:

1. Default Constructor: A constructor that takes no arguments.

2. Parameterized Constructor: A constructor that takes one or more arguments to
initialize an object.

3. Copy Constructor: A constructor that creates a new object as a copy of an existing
object.

Example of a Default Constructor:

#include <iostream>
using namespace std;

class Student {
public:
string name;
int age;

// Default Constructor
Student () {
name = "Unknown";
age = 0;
}

void displayInfo () {
cout << "Name: " << name << ", Age: " << age << endl;

}

main () {

Student studentl; // Default constructor is called
studentl.displayInfo();

return 0;

Explanation:

e The default constructor initializes the object with default values (name = "Unknown" and
age = 0).

Page |2

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (5)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

When student student1; IS executed, the default constructor is automatically invoked,
and it assigns the default values to student1.

Example of a Parameterized Constructor:

#include <iostream>
using namespace std;

class Student {
public:
string name;
int age;

// Parameterized Constructor
Student (string n, int a) {
name = n;
age = a;

}

void displayInfo () {
cout << "Name: " << name << ", Age: " << age << endl;
}
bi

int main () {

Student studentl (“Ali :", 20); // Parameterized constructor
is called

studentl.displayInfo () ;

return 0;

Explanation:

The parameterized constructor takes two arguments (n and a) and uses them to initialize

the name and age attributes.
When student studentl ("Alice"™, 20); IS executed, the constructor is invoked, and
the object is initialized with the given values.

2. Copy Constructor

A copy constructor creates a new object as a copy of an existing object. This is particularly
useful when you need to duplicate an object.

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (5)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

ClassName (const ClassName &old obj);

Example of a Copy Constructor:

#include <iostream>
using namespace std;

class Book {
public:
string title;
int pages;

// Parameterized Constructor
Book (string t, int p) {
title = t;
pages = p;
}

// Copy Constructor
Book (const Book &b) {
title = b.title;
pages = b.pages;
}

void displayInfo () {
cout << "Title: " << title << ", Pages: " << pages << endl;
}
bi

int main () {
Book bookl ("C++ Programming", 500); // Parameterized
constructor is called
Book book2 = bookl; // Copy constructor is called
book2.displayInfo () ;
return 0;

Explanation:

e The copy constructor copies the values of book1's attributes to book2.
e When Book book2 = bookl; IS executed, the copy constructor is invoked, creating an
identical copy of book1.

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (5)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

3. Destructor

A destructor is a special member function that is automatically called when an object is
destroyed. Its primary purpose is to release any resources that the object may have acquired
during its lifetime. The destructor has the same name as the class but is preceded by a tilde (~).

Example of a Destructor:

#include <iostream>
using namespace std;

class Student {
public:
string name;
int age;

// Constructor
Student (string n, int a) {
name = n;
age = a;
cout << "Constructor is called for " << name << endl;

}

// Destructor
~Student () {
cout << "Destructor is called for " << name << endl;

}

void displayInfo() {
cout << "Name: " << name << ", Age: " << age << endl;
}
}i

int main () {
Student studentl ("Alice", 20);
studentl.displayInfo();
return 0;

Explanation:

The constructor is called when the object student1 is created, and it initializes the
object’s attributes.

The destructor Is automatically called when the program ends, or when the object goes
out of scope. It is used to clean up any resources that the object might have used.

In the output, you will see the constructor message when the object is created and the
destructor message when the object is destroyed.

Department of Cyber Security

Lecturer Name
Object Oriented Programming — Lecture (5)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

)
2
) 3931100

4. Key Differences Between Constructor and Destructor:

\ Constructor H Destructor |
lInitializes an object when it is created. ||Cleans up when an object is destroyed. |

Can be overloaded (multiple constructors). ||Cannot be overloaded (only one destructor). |

Can take parameters (parameterized Does not take any parameters.
constructor).

Called automatically when an object is Called automatically when an object goes
instantiated. out of scope or is deleted.

5. Constructor Overloading

In C++, constructors can be overloaded, meaning a class can have multiple constructors with
different parameter lists.

Example of Constructor Overloading:

#include <iostream>
using namespace std;

class Rectangle {
public:
int length, width;

// Default Constructor
Rectangle () {

length = 0;

width = 0;
}

// Parameterized Constructor

void displayArea () {
cout << "Area: " << length * width << endl;

}
)8

int main () {
Rectangle rectl; // Default constructor is called

Rectangle rect2 (5)0) // parameterized constructor is called

| rectl.displayArea(); //Displays area of default rectangle (0)
Page |6

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (5)

2%
) 393100

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

rect2.displayArea () ; // Displays area of rectangle (50)
return 0;

}

Explanation:

The class rectangle has two constructors: a default constructor and a parameterized
constructor.

Depending on how the object is created, the appropriate constructor is called.

rect1 calls the default constructor, and rect2 calls the parameterized constructor.

6. Conclusion:

Constructors initialize objects and can be overloaded to provide different ways of
creating an object.

Destructors clean up resources when an object is destroyed.

Proper management of resources using constructors and destructors ensures efficient and
safe use of memory and other resources.

QUESTIONS OF THE LECTURE

. What is the primary purpose of a constructor in a class?

. When is a constructor automatically called in C++?
What is the main characteristic that distinguishes a constructor from other member
functions?

. What is the syntax used to define a copy constructor in C++?

. Which constructor is invoked when an object is created using another existing object of
the same class?

. What happens when the destructor of a class is called?

. How does the compiler identify a destructor in a class definition?

. Why can constructors be overloaded, but destructors cannot?
What is the difference between a default constructor and a parameterized constructor?

