

P a g e | 1

Department of Cyber Security

Object Oriented Programming – Lecture (5)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security

Subject:

Object Oriented Programming (OOP)

Class:

Second

Lecturer:

Dr. Abdulkadhem A. Abdulkadhem

Lecture: (5)

Constructors and Destructors

P a g e | 2

Department of Cyber Security

Object Oriented Programming – Lecture (5)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1. Introduction to Constructors

A constructor is a special member function that is automatically called when an object is

created. Its primary purpose is to initialize objects of a class. The constructor has the same name

as the class and does not have a return type.

Types of Constructors:

1. Default Constructor: A constructor that takes no arguments.

2. Parameterized Constructor: A constructor that takes one or more arguments to

initialize an object.

3. Copy Constructor: A constructor that creates a new object as a copy of an existing

object.

Example of a Default Constructor:

#include <iostream>

using namespace std;

class Student {

public:

 string name;

 int age;

 // Default Constructor

 Student() {

 name = "Unknown";

 age = 0;

 }

 void displayInfo() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student student1; // Default constructor is called

 student1.displayInfo();

 return 0;

}

Explanation:

 The default constructor initializes the object with default values (name = "Unknown" and

age = 0).

P a g e | 3

Department of Cyber Security

Object Oriented Programming – Lecture (5)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 When Student student1; is executed, the default constructor is automatically invoked,

and it assigns the default values to student1.

Example of a Parameterized Constructor:

#include <iostream>

using namespace std;

class Student {

public:

 string name;

 int age;

 // Parameterized Constructor

 Student(string n, int a) {

 name = n;

 age = a;

 }

 void displayInfo() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student student1 (“Ali :", 20); // Parameterized constructor

is called

 student1.displayInfo();

 return 0;

}

Explanation:

 The parameterized constructor takes two arguments (n and a) and uses them to initialize

the name and age attributes.

 When Student student1("Alice", 20); is executed, the constructor is invoked, and

the object is initialized with the given values.

2. Copy Constructor

A copy constructor creates a new object as a copy of an existing object. This is particularly

useful when you need to duplicate an object.

P a g e | 4

Department of Cyber Security

Object Oriented Programming – Lecture (5)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Syntax:

ClassName(const ClassName &old_obj);

Example of a Copy Constructor:

#include <iostream>

using namespace std;

class Book {

public:

 string title;

 int pages;

 // Parameterized Constructor

 Book(string t, int p) {

 title = t;

 pages = p;

 }

 // Copy Constructor

 Book(const Book &b) {

 title = b.title;

 pages = b.pages;

 }

 void displayInfo() {

 cout << "Title: " << title << ", Pages: " << pages << endl;

 }

};

int main() {

 Book book1("C++ Programming", 500); // Parameterized

constructor is called

 Book book2 = book1; // Copy constructor is called

 book2.displayInfo();

 return 0;

}

Explanation:

 The copy constructor copies the values of book1's attributes to book2.

 When Book book2 = book1; is executed, the copy constructor is invoked, creating an

identical copy of book1.

P a g e | 5

Department of Cyber Security

Object Oriented Programming – Lecture (5)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

3. Destructor

A destructor is a special member function that is automatically called when an object is

destroyed. Its primary purpose is to release any resources that the object may have acquired

during its lifetime. The destructor has the same name as the class but is preceded by a tilde (~).

Example of a Destructor:

#include <iostream>

using namespace std;

class Student {

public:

 string name;

 int age;

 // Constructor

 Student(string n, int a) {

 name = n;

 age = a;

 cout << "Constructor is called for " << name << endl;

 }

 // Destructor

 ~Student() {

 cout << "Destructor is called for " << name << endl;

 }

 void displayInfo() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student student1("Alice", 20);

 student1.displayInfo();

 return 0;

}

Explanation:

 The constructor is called when the object student1 is created, and it initializes the

object’s attributes.

 The destructor is automatically called when the program ends, or when the object goes

out of scope. It is used to clean up any resources that the object might have used.

 In the output, you will see the constructor message when the object is created and the

destructor message when the object is destroyed.

P a g e | 6

Department of Cyber Security

Object Oriented Programming – Lecture (5)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

4. Key Differences Between Constructor and Destructor:

Constructor Destructor

Initializes an object when it is created. Cleans up when an object is destroyed.

Can be overloaded (multiple constructors). Cannot be overloaded (only one destructor).

Can take parameters (parameterized

constructor).
Does not take any parameters.

Called automatically when an object is

instantiated.

Called automatically when an object goes

out of scope or is deleted.

5. Constructor Overloading

In C++, constructors can be overloaded, meaning a class can have multiple constructors with

different parameter lists.

Example of Constructor Overloading:

#include <iostream>

using namespace std;

class Rectangle {

public:

 int length, width;

 // Default Constructor

 Rectangle() {

 length = 0;

 width = 0;

 }

 // Parameterized Constructor

 Rectangle(int l, int w) {

 length = l;

 width = w;

 }

 void displayArea() {

 cout << "Area: " << length * width << endl;

 }

};

int main() {

 Rectangle rect1; // Default constructor is called

 Rectangle rect2(5, 10); // Parameterized constructor is called

 rect1.displayArea(); //Displays area of default rectangle (0)

P a g e | 7

Department of Cyber Security

Object Oriented Programming – Lecture (5)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 rect2.displayArea(); // Displays area of rectangle (50)

 return 0;

}

Explanation:

 The class Rectangle has two constructors: a default constructor and a parameterized

constructor.

 Depending on how the object is created, the appropriate constructor is called.

 rect1 calls the default constructor, and rect2 calls the parameterized constructor.

6. Conclusion:

 Constructors initialize objects and can be overloaded to provide different ways of

creating an object.

 Destructors clean up resources when an object is destroyed.

 Proper management of resources using constructors and destructors ensures efficient and

safe use of memory and other resources.

Questions of the lecture

1. What is the primary purpose of a constructor in a class?

2. When is a constructor automatically called in C++?

3. What is the main characteristic that distinguishes a constructor from other member

functions?

4. What is the syntax used to define a copy constructor in C++?

5. Which constructor is invoked when an object is created using another existing object of

the same class?

6. What happens when the destructor of a class is called?

7. How does the compiler identify a destructor in a class definition?

8. Why can constructors be overloaded, but destructors cannot?

9. What is the difference between a default constructor and a parameterized constructor?

