Computation Theory

SN
0 :.‘;f:f'
2, g 4
K'?S/fy 7 g

d!olm all aeo AIA.

AL MUSTAQBAL UNIVERSITY

.
‘I\llltl
(-, 7 v

SUBJECT: COMPUTATION THEORY
CLASS: 3rd

LECTURER: MSC .MUNTATHER AL-MUSSAWEE

LECTURE: (7)

CHOMSKYNORMALFORM(CNF)

—

33

C—'

Computation Theory

ChomsKy Normmal Form (CiNE)

Convert CFG to A- free CFG

Theorem

If L is a context-free language generated by a CFG that includes A-productions,
then there is a different context-free grammar that has no A-productions that
generates either the whole language L (if L does not include the word A) or else
generates the language of all the words in L that are not A.

Definition:

In a given CFG, we call a Non-terminal N nullable if:
- There is a production: N— A
Or
- There is a derivation that start at N and leads to A: N—...— A

Replacement Rule

1. Delete all A-productions.
2. Add the following productions: For every production

X — old string
add enough new productions of the form X — ... that the right side will account
for any modification of the old string that can be formed by deleting all possible
subsets of nullable Non-terminals, except that we do not allow X — A to be
formed even if all the characters in this old right-side string are nullable.

Example: Consider the CFG:

S—a|Xb|aYa
X—>Y|A
Y—-b|X

X and Y are nullable.
The new CFG 1is:

S—a|Xb|aYa|b|aa
X—=Y
Y—-b|X

—

34

C—'

Computation Theory

Example: Consider the CFG:

S — Xa
X —aX|bX|A

X 1s the only nullable Non-terminal.
The new CFG is:

S— Xa|a
X—aX|bX|a|b

Example: Consider this inefficient CFG for the language defined by:
(a+b)*bb(a + b)*

S —- XY

X — 7Zb

Y— bW

7. — AB

W—Z

A —aA|bA|A

B—Ba|Bb|A

A, B, W and Z are nullable.
The new CFG is:

S - XY
X—Z7Zb|b
Y—->bW|b
Z—AB|A|B
W—Z

A —aA|bAlalb
B—Ba|Bbla|b

Homework: Convert the following CFG to A- free CFG:

S— X|YaY |aSb|b
X—>YY|b|A
Y — aY|aaX

—

35

C—'

Computation Theory

Convert CFG to CNF

Theorem

For any CFL the non- A words of L can be generated by a grammar in which all
productions are of one of two forms:
Non-terminal — string of exactly two Non-terminals
or
Non-terminal — One Terminal

It is said to be in Chomsky Normal Form (CNF).

Conversion steps:

1- Deleting A- productions.
2- Convert right side to Non-terminals.
3- Convert to CNF.

Example: Convert the following CFG into CNF:

S— aSa|bSb|Xa|a|b|aa|bb
X—>Alb
1- Deleting A- productions.

S— aSa|bSb|Xa|a|b|aa|bb
X—b

2- Convert right side to Non-terminals.

S— ASA|BSB|XA|AA|BB|a|b
X—b
A—a
B—b
3- Convert to CNF.

S— ARi|BR>| XA|AA|BB|a|b
R; — SA

R,— SB

X—b

A—a

B—b

—

36

C—'

Computation Theory

Example: Convert the following CFG into CNF:

S — bA|aB
A— bAA | aS

| a

B— aBB |bS | b

1- Convert right side to Non-terminals.

S — YA | XB

A— YAA | XS | a
B— XBB|YS|b

X—a
Y—b
2- Convert to CNF.

S — YA | XB
A— YRy| XS

| a

B— XR»|YS | b

X—a
Y—b
Ri— AA
R,— BB

Example: Convert the following CFG into CNF:

S— AAAAS
S— AAAA
A—a
Convert to CNF:
S — ARy
R — AR,
R, — AR3
R;— AS
S — AR4
R4 — AR5
Rs —» AA
A—a

(where R1 = AAAS)
(where R2 = AAS)
(where Rz = AS)

(where Ra=AAA)
(where Rs = AA)

—

37

C—'

Computation Theory

Homework: Convert the following CFG's to CNF.

1-S—SS|a
2-S—aSa|SSa|a

3- S—aXX
X —aS|bS|a

4- E> E+E
E— E*E
E—7
The terminals here are + * () 7.

Chomsky Hierarchy

Noam Chomsky introduced the Chomsky hierarchy which classifies grammars
and languages. This hierarchy can be amended by different types of machines (or
automata) which can recognize the appropriate class of languages.

The Chomsky hierarchy consists of the following levels:

Type-0: grammars (unrestricted grammars) include all formal grammars.

Type-1: grammars (context-sensitive grammars) generate the context sensitive
languages.

Type-2: grammars (context-free grammars) generate the context-free languages.

Type-3: grammars (regular grammars) generate the regular languages.

—

38

C—'

Computation Theory

r recursively enumerable
4 '-.'
.l... /_\ '*.I‘
I' 7 context-sensitive ™, '|

i T e L
| | ||' .-”‘If T lI .'|

\, s context-free ™ /
."-\..‘. I.I,"- |' l.-.‘‘-.___,.—-—"_"--‘—___h-\'‘. l ...‘:" l?‘.-..
M regular) 7

- J}_x‘ o

Every regular language is context-free, every context-free language, not
containing the empty string, is context-sensitive and every context-sensitive
language is recursive and every recursive language is recursively enumerable.

The following table summarizes each of Chomsky's four types of grammars, the
class of language it generates, the type of automaton that recognizes it, and the
form its rules must have.

Type Language Grammar Machine
Regular grammar RG Finite Automata
Type 3 | Regular language N> t|tN FA
Context free grammar Pushdown
Context free CFG
Type 2 N automaton
language u—->v,u€N PDA
ve(NUT)*
C . Context sensitive grammar | Linear bounded
ontext sensitive
Type 1 laneuage CSG automaton
guag u—-v,(wv) ENUT) LBA
Tvpe 0 ercgfs;vg}y Unrestricted grammar UG | Turing machine
yp elu crabie u-v,(uv)eE(NUT)* ™
anguage

—

39

C—'

	ChomskyNormalForm(CNF)
	Chomsky Normal Form (CNF)
	Convert CFG to ∧- free CFG
	Theorem
	Definition:
	Replacement Rule
	S → XY
	W→ Z
	S → XY
	Z → AB | A | B W→ Z

	Convert CFG to CNF
	Theorem
	R2 → SB
	S → YA | XB
	S → YA | XB
	S→ AAAA
	R3 → AS

	Chomsky Hierarchy

