
Computation Theory

33

مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ــــــــــس ــق
Department of Cyber Security

Subject: Computation Theory

Class: 3rd

Lecturer: Msc :Muntather AL-mussawee

Lecture: (7)

 ChomskyNormalForm(CNF)

Computation Theory

34

 Chomsky Normal Form (CNF)

Convert CFG to ∧- free CFG

Theorem

If L is a context-free language generated by a CFG that includes ∧-productions,

then there is a different context-free grammar that has no ∧-productions that

generates either the whole language L (if L does not include the word ∧) or else

generates the language of all the words in L that are not ∧.

Definition:

In a given CFG, we call a Non-terminal N nullable if:

- There is a production: N→ ∧

Or

- There is a derivation that start at N and leads to Λ: N→…→ ∧

Replacement Rule

1. Delete all ∧-productions.

2. Add the following productions: For every production

X → old string

add enough new productions of the form X → … that the right side will account

for any modification of the old string that can be formed by deleting all possible

subsets of nullable Non-terminals, except that we do not allow X → ∧ to be

formed even if all the characters in this old right-side string are nullable.

Example: Consider the CFG:

S → a | Xb | aYa

X → Y | ∧
Y → b | X

X and Y are nullable.

The new CFG is:

S → a | Xb | aYa | b | aa

X → Y

Y → b | X

Computation Theory

35

Example: Consider the CFG:

S → Xa

X → aX | bX | ∧

X is the only nullable Non-terminal.

The new CFG is:

S → Xa | a

X → aX | bX | a | b

Example: Consider this inefficient CFG for the language defined by:

(a + b)*bb(a + b)*
S → XY

X → Zb

Y→ bW

Z → AB
W→ Z

A → aA | bA | ∧
B → Ba | Bb | ∧

A, B, W and Z are nullable.

The new CFG is:

S → XY

X → Zb | b

Y → bW | b

Z → AB | A | B

W→ Z

A → aA | bA | a | b

B → Ba | Bb | a | b

Homework: Convert the following CFG to ∧- free CFG:

S → X | YaY | aSb | b

X → YY | b | ∧

Y → aY | aaX

Computation Theory

36

Convert CFG to CNF

Theorem

For any CFL the non- Λ words of L can be generated by a grammar in which all

productions are of one of two forms:

Non-terminal → string of exactly two Non-terminals

or

Non-terminal → One Terminal

It is said to be in Chomsky Normal Form (CNF).

Conversion steps:

1- Deleting ∧- productions.

2- Convert right side to Non-terminals.

3- Convert to CNF.

Example: Convert the following CFG into CNF:

S→ aSa | bSb | Xa | a | b | aa | bb

X → ∧ | b

1- Deleting ∧- productions.

S→ aSa | bSb | Xa | a | b | aa | bb

X → b

2- Convert right side to Non-terminals.

S → ASA | BSB | XA | AA | BB | a | b

X → b

A → a

B → b

3- Convert to CNF.

S → AR1 | BR2 | XA | AA | BB | a | b

R1 → SA

R2 → SB

X → b

A → a

B → b

Computation Theory

37

Example: Convert the following CFG into CNF:

S → bA | aB

A→ bAA | aS | a

B→ aBB | bS | b

1- Convert right side to Non-terminals.

S → YA | XB

A→ YAA | XS | a

B→ XBB | YS | b

X→ a

Y→ b

2- Convert to CNF.

S → YA | XB

A→ YR1| XS | a

B→ XR2 | YS | b

X→ a

Y→ b

R1→ AA

R2→ BB

Example: Convert the following CFG into CNF:

S→ AAAAS

S→ AAAA

A→ a

Convert to CNF:

S → AR1 (where R1 = AAAS)

R1 → AR2 (where R2 = AAS)

R2 → AR3 (where R3 = AS)

R3 → AS

S → AR4 (where R4 = AAA)

R4 → AR5 (where R5 = AA)

R5 → AA

A → a

Computation Theory

38

Homework: Convert the following CFG's to CNF.

1- S →SS | a

2- S→ aSa | SSa | a

3- S → aXX

X → aS | bS | a

4- E→ E + E

E→ E*E

E → (E)

E→ 7

The terminals here are + * () 7.

Chomsky Hierarchy

Noam Chomsky introduced the Chomsky hierarchy which classifies grammars

and languages. This hierarchy can be amended by different types of machines (or

automata) which can recognize the appropriate class of languages.

The Chomsky hierarchy consists of the following levels:

Type-0: grammars (unrestricted grammars) include all formal grammars.

Type-1: grammars (context-sensitive grammars) generate the context sensitive

languages.

Type-2: grammars (context-free grammars) generate the context-free languages.

Type-3: grammars (regular grammars) generate the regular languages.

Computation Theory

39

Every regular language is context-free, every context-free language, not

containing the empty string, is context-sensitive and every context-sensitive

language is recursive and every recursive language is recursively enumerable.

The following table summarizes each of Chomsky's four types of grammars, the

class of language it generates, the type of automaton that recognizes it, and the

form its rules must have.

Type Language Grammar Machine

Type 3 Regular language
Regular grammar RG

N → t | tN
Finite Automata

FA

Type 2
Context free

language

Context free grammar

CFG

u → v, u ∈ N+
v ∈ (N ∪ T)*

Pushdown

automaton

PDA

Type 1
Context sensitive

language

Context sensitive grammar

CSG
u → v, (u,v) ∈ (N ∪ T)+

Linear bounded

automaton
LBA

Type 0
Recursively

enumerable
language

Unrestricted grammar UG

u → v, (u,v) ∈ (N ∪ T)*

Turing machine

TM

	ChomskyNormalForm(CNF)
	Chomsky Normal Form (CNF)
	Convert CFG to ∧- free CFG
	Theorem
	Definition:
	Replacement Rule
	S → XY
	W→ Z
	S → XY
	Z → AB | A | B W→ Z

	Convert CFG to CNF
	Theorem
	R2 → SB
	S → YA | XB
	S → YA | XB
	S→ AAAA
	R3 → AS

	Chomsky Hierarchy

