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                Chomsky Normal Form (CNF) 

Convert CFG to ∧- free CFG 

Theorem 

If L is a context-free language generated by a CFG that includes ∧-productions, 

then there is a different context-free grammar that has no ∧-productions that 

generates either the whole language L (if L does not include the word ∧) or else 

generates the language of all the words in L that are not ∧. 

 

Definition: 

In a given CFG, we call a Non-terminal N nullable if: 

- There is a production: N→ ∧ 

Or 

- There is a derivation that start at N and leads to Λ: N→…→ ∧ 

Replacement Rule 

1. Delete all ∧-productions. 

2. Add the following productions: For every production 

X → old string 

add enough new productions of the form X → … that the right side will account 

for any modification of the old string that can be formed by deleting all possible 

subsets of nullable Non-terminals, except that we do not allow X → ∧ to be 

formed even if all the characters in this old right-side string are nullable. 

 

Example: Consider the CFG: 

S → a | Xb | aYa 

X → Y | ∧ 
Y → b | X 

X and Y are nullable. 

The new CFG is: 

S → a | Xb | aYa | b | aa 

X → Y 

Y → b | X 
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Example: Consider the CFG: 

S → Xa 

X → aX | bX | ∧ 

X is the only nullable Non-terminal. 

The new CFG is: 

S → Xa | a 

X → aX | bX | a | b 

 
Example: Consider this inefficient CFG for the language defined by: 

(a + b)*bb(a + b)* 
S → XY 

X → Zb 

Y→ bW 

Z → AB 
W→ Z 

A → aA | bA | ∧ 
B → Ba | Bb | ∧ 

A, B, W and Z are nullable. 

The new CFG is: 

S → XY 

X → Zb | b 

Y → bW | b 

Z → AB | A | B 

W→ Z 

A → aA | bA | a | b 

B → Ba | Bb | a | b 

Homework: Convert the following CFG to ∧- free CFG: 

S → X | YaY | aSb | b 

X → YY | b | ∧ 

Y → aY | aaX 
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Convert CFG to CNF 

Theorem 

For any CFL the non- Λ words of L can be generated by a grammar in which all 

productions are of one of two forms: 

Non-terminal → string of exactly two Non-terminals 

or 

Non-terminal → One Terminal 

It is said to be in Chomsky Normal Form (CNF). 

Conversion steps: 

1- Deleting ∧- productions. 

2- Convert right side to Non-terminals. 

3- Convert to CNF. 

 

Example: Convert the following CFG into CNF: 

S→ aSa | bSb | Xa | a | b | aa | bb 

X → ∧ | b 

1- Deleting ∧- productions. 

S→ aSa | bSb | Xa | a | b | aa | bb 

X → b 

2- Convert right side to Non-terminals. 

S → ASA | BSB | XA | AA | BB | a | b 

X → b 

A → a 

B → b 

3- Convert to CNF. 

S → AR1 | BR2 | XA | AA | BB | a | b 

R1 → SA 

R2 → SB 

X → b 

A → a 

B → b 
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Example: Convert the following CFG into CNF: 

S → bA | aB 

A→ bAA | aS | a 

B→ aBB | bS | b 

1- Convert right side to Non-terminals. 

S → YA | XB 

A→ YAA | XS | a 

B→ XBB | YS | b 

X→ a 

Y→ b 

2- Convert to CNF. 

S → YA | XB 

A→ YR1| XS | a 

B→ XR2 | YS | b 

X→ a 

Y→ b 

R1→ AA 

R2→ BB 

 

Example: Convert the following CFG into CNF: 

S→ AAAAS 

S→ AAAA 

A→ a 

Convert to CNF: 

S → AR1  (where R1 = AAAS) 

R1 → AR2  (where R2 = AAS) 

R2 → AR3 (where R3 = AS) 

R3 → AS 

S → AR4  (where R4 = AAA) 

R4 → AR5 (where R5 = AA) 

R5 → AA 

A → a 
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Homework: Convert the following CFG's to CNF. 

1- S →SS | a 

2- S→ aSa | SSa | a 

3- S → aXX 

X → aS | bS | a 

4- E→ E + E 

E→ E*E 

E → (E) 

E→ 7 

The terminals here are + * ( ) 7. 

 

 

Chomsky Hierarchy 

Noam Chomsky introduced the Chomsky hierarchy which classifies grammars 

and languages. This hierarchy can be amended by different types of machines (or 

automata) which can recognize the appropriate class of languages. 

 

The Chomsky hierarchy consists of the following levels: 

Type-0: grammars (unrestricted grammars) include all formal grammars. 

Type-1: grammars (context-sensitive grammars) generate the context sensitive 

languages. 

Type-2: grammars (context-free grammars) generate the context-free languages. 

Type-3: grammars (regular grammars) generate the regular languages. 
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Every regular language is context-free, every context-free language, not 

containing the empty string, is context-sensitive and every context-sensitive 

language is recursive and every recursive language is recursively enumerable. 

The following table summarizes each of Chomsky's four types of grammars, the 

class of language it generates, the type of automaton that recognizes it, and the 

form its rules must have. 
 

 

Type Language Grammar Machine 

Type 3 Regular language 
Regular grammar RG 

N → t | tN 
Finite Automata 

FA 

 

Type 2 
Context free 

language 

Context free grammar 

CFG 

u → v, u ∈ N+ 
v ∈ (N ∪ T)* 

Pushdown 

automaton 

PDA 

Type 1 
Context sensitive 

language 

Context sensitive grammar 

CSG 
u → v, (u,v) ∈ (N ∪ T)+ 

Linear bounded 

automaton 
LBA 

Type 0 
Recursively 

enumerable 
language 

Unrestricted grammar UG 

u → v, (u,v) ∈ (N ∪ T)* 

Turing machine 

TM 
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